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ABSTRACT

The basic objective of this study was to develop and compile a manual which
would include practical and up-to-date methods for analyzing the structural
stability of sandwich plates and shells for typical loading conditions which
might be encountered in aerospace applications. The methods proposed for
use would include known analytical approaches as modified for correlation
with applicable test data.

The data pr-~sented here covers recommended design equations and curves
for a wide range of structural configurations and loading conditions, includ-
ing combined loads. In a number of cases, actual test data points are in-
cluded on the design curves to substantiate the recommendations made., For
those items where little or no test data exists the basic analytical approach
is presented along with the notation that this represented the '"best available™
data and should be used with some caution and judgment until substantiated
by test.

The following subjects are among those covered in the manual;
Local Instability
General Instability of Flat Panels
General Instability of Circular Cylinders
General Instability of Truncated Circular Cones
General Instability of Dome-Shaped Shells
Instability of Sandwich Shell Segments
Effects of Cutouts on the General Instability of Sandwich Shells

Inelastic Behavior of Sandwich Plates and Shells
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in the x direction, dimensionless.

Buckling coefficient associated with compressive stress acting in the
y direction, dimensionless.

Loading coefficient for applied compressive stress which is acting in
the y direction, dimensionless.

Over-all length, inches.

Effective length, inches.

Applied bending moment, in-lbs.

Critical bending moment, in-lbs.

Margin of safety, dimensionless.

Critical compressive running load, lbs/inch.

Number of circumferential full-waves in the buckle pattern,
dimensionless.
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Axial load, lbs.
FEquivalent axial load defincd by Equation (5.6-32), lbs.
Critical axial load, lbs.

Empirical lower-bound value for critical axial load when acting
alone, ibs.

External pressure, psi.
Critical value for external pressure, psi.
Experimental value for critical external pressure, psi.

Classical theoretical critical pressurc for a cylinder éubjected to
external pressure acting only on the end closures, psi.

External pressure acting only on the lateral surface of a cylinder,
psi.

Classical theoretical critical pressure for a cylinder subjected to
external pressure acting only on the lateral surface, psi.

The relative minimum, with respect to £, of expression (2.2-2),
dimensionless.

Quantity defined by Eguation (2.2-3), dimensionless.

Degree of core shear modulus orthotropicity = Gca/Gc
dimensionless. Radius to middle surface, inches.

b’
Stress ratio defined by Equation (4.7-9), dimensionless.

Stress ratio defined by Equation (4.7-5), dimensionless.

Load, stress, or pressure ratios as defined in appropriate sections
of this handbook, dimensionless.

Stress ratios as defined in appropriate sections of this handbook,
dimensionless.

Effective radius, inches.
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Stress or load ratio for the particular iype of loading associated with
the subscript i, dimensionless.

Stress or load ratio for the particular type of loading associated with
the subscript j, dimensionless.

Radius to middle surface at the large end of a truncated conical shell,
measured perpendicular to the axis of revolution, inches.

Maxium radius of curvature for middle surface of a dome-shaped
shell, inches.

Pressure ratios as defined in appropriate sections of this handbook,
dimensionless.

Pressure ratio defined by Equation (4.7-15), dimensionless.

Load or stress ratios as defined in appropriate sections of this
handbook, dimensionless.

Stress ratio defined by Equation (4.7-29), dimensionless.

Radius to middle surface at the small end of a truncated conical shell,
measured perpendicular to the axis of revolution, inches.

Stress or load ratio corresponding to the x direction, dimensionless.
Stress or load ratio corresponding to the y direction, dimensionless.

Middle-surface radius of curvature in the plane perpendicular to the
meridian, inches.

Parameter defined by Equation (4.2-37), dimensionless.
Cell size of honeycomb core, inches.

External torque, in-lbs.

Critical external torque, in-lbs,

Empirical lower-bound value for critical torque when acting alone,
in-lbs.

Thickness, inches.
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Total thickness of the cylindrical pancl shown in Figure 7.1-1, inches.

Thickness of core (measured in the direction normal to the facings),
inches.

Thickness of a single facing, inches.

Total thickness of the flat panel shown in Figure 7.1-1, inches.
Thickness of material from which corrugated core is formed, inches.
Thicknesses of the respective facings of a sandwich construction

(there is no preference as to which facing is denoted by the subscript
1 or 2), inches.

h
Sandwich transverse shear stiffness, defined as U = — Gc o~ th’
Ibs. per inch, c
172D
Bending and shear rigidity parameter which is defined as V = ——,
dimensionless. b U

Parameter defined in Sections 4.2 and 6.2, dimensionless.

Parameter defined by Equation (4.4-4), dimensionless.

Parameter defined by Equation (4.5-4), dimensionless.

Parameter defined by Equation (4.7-13), dimensionless.

Parameter defined by Equation (4.7-14), dimensionless.

Bending and shear rigidity parameter for flat sandwich panels with
Trztc (Eltl)(E2t2) n

corrugated core which is defined as W = )
dimensionless, t
n Ss b Gcb(Elt +E2 2)

1

Running compression load, lbs/inch.
Length paramcter defined by Equation (4.2-33), dimensionless.

-

Length parameter defined by Equation (4.5-3), dimensionless.
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Angle of rotation at appropriate joint in corrugated-core sandwich
construction (sec Figure 2.1-5), degrees. Vertex half-angle of
conical shell, degrees,

Angle of rotation at appropriate joint in corrugated-core sandwich
construction (see Figure 2.1-5), degrees.

Knock-down factor, dimensionless, Ratio = oy/ax, dimensionless,

Knock-down tactor associated with general instability under pure
bending, dimensionless.

Knock-down factor associated with general instability under axial
compression, dimensionless.

Knock-down factor associated with the general instability of a dome-
shaped shell under external pressure, dimensionless.

Knock-down factor determined from a test specimen subjected to the
loading condition corresponding to the subscript i, dimensionless.

Knock-down factor associated with general instability of a cylinder
under uniform external lateral pressure, dimensionless.

Knock-down factor associated with general instability under pure
torsion, dimensionless.,

Amplitude of initial waviness in facing, inches.
Normal strain in the x direction, in/in.
Normal strain in the y direction, in/in,

Shear strain in the xy plane, in/in,

Parameter involving the core elastic moduli, core thickness, and
buckle wavelength, dimensionless.

Plasticity reduction factor, dimensionless.

Plasticity reduction factor corresponding to an experimental critical
stress value, dimensionless.

2
(1- uapb) =(1- pi) for isotropic facings, dimensionless. Ratio =

T/O'X, dimensionless,
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Ratio of transverse shear moduli of core [see Equation (4.2-1)],
dimensionless.,

Actual Poisson's ratio of facing, dimensionless.

Elastic Poisson's ratio of facing, dimensionless.

Radius of gyration for shell wall of sandwich and non-sandwich
constructions (p - h/2 for sandwich constructions whose two
facings are of equal thickness), inches.

Stress, psi.

Peak compressive stress due solely to an applied bending moment,
psi.

Classical theoretical value for the critical peak compressive stress
under a bending moment acting alone, psi.

Classical value of critical stress, psi.

Uniform compressive stress due solely to an applied axial load,
psi.

Effective compressive stress defined by Equation (4.7-38), psi.

Peak axial compressive stress due solely to an applied bending
moment, psi.

Uniform axial compressive stress due solely to an applied axial
load, psi.

Classical theoretical value for the critical uniform compressive
stress under an axial load acting alone, psi.

Critical stress, psi.

Experimental critical stress obtained from a particular test speci-
men, psi.

Experimental critical stress which would have been attained had
the test specimen remained elastic, psi.
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Critical value for the compressive stress acting in the x direction,
psi.

Compressive stresses in facings 1 and 2, respectively, in the pres-
cnce of the critical loading for general instability (there is no prefer-

ence as to which facing is denoted by the subscript 1 or 2), psi.

Uniaxial compressive stress at which shear crimping occurs in sand-
wich constructions, psi.

Stress intensity defined by Equation (9.2-1), psi.
Hoop membrane stress, psi.
Meridional membrane stress, psi.

Maximum possible critical stress corresponding to a particular
material, psi.

Minimum value of stress for the post-buckling equilibrium path, psi.
Predicted value for critical stress, psi.

Critical buckling stress for a flat plate, psi.

Critical buckling stress for a complete cylinder, psi.

Facing wrinkling stress, psi.

Stress acting in the x direction, psi. Uniform axial compressive
stress due to an applied axial load, psi.

Effective compressive stress defined by Equation (4.7-37), psi.

Peak axial compressive stress due solely to an applied bending
moment, psi.

Classical theoretical value for critical uniform axial compressive
stress when acting alone, psi.

Uniform axial compressive stress due solely to an applied axial
load, psi.

Stress acting in the y direction, psi.
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Shear stress, psi.
Effective shear stress defined by Equation (4.7-39), psi.

Classical theoretical value for critical uniform shear stress when
acting alone, psi.

Critical shear stress, psi.

Critical shear stress for an equivalent cylinder subjected to an
applied torque, psi.

Pure shear stress, acting coplanar with the facings, at which shear
crimping occurs in sandwich constructions, psi.

Uniform shear stress due solely to an applied torque, psi.

Peak shear stress due solely to an applied transverse shear force,
psi.

Angular dimension of corrugated core (see Figure 2.1-4), degrees.
Quantity defined by Equation (4.2-10), dimensionless.

Angle of rotation at appropriate joint in corrugated-core sandwich
construction (see Figure 2.1-5), degrees, Parameter defined by
Equation (4.4-3), dimensionless.,



CONVERSION OF U.S. CUSTOMARY UNITS TO THE
INTERNATIONAL SYSTEM OF UNIT‘S1

(Reference: MIL-HDBK-23)

U.S. Customary Conversion

Quantity Unit Factor? SI Unit
.3 3 . 3 3
Densit Ibm/in, 27.68 x10° kilograms/meter_ (kg/m_)
ensity Tbm/ ft3 16.02 kilograms/meter (kg/m’)
it 0.3048 meters (m)
1l
Length {in. 0.0254 meters (m)
. 2
Stress psi 6.895 x 10‘3 newtons/meter2 (N/m")
2
p 1b/in.2 6.895 ><103 newtons/meter‘2 (N/m")
ressure 1b/ft2 47.88 newtons/meter? (N/m?)
Moduli {iigfgigty psi 6.895 x 103 newtons/meter2 (N/m2)
Temperature (°F + 460) 5/9 degrees Kelvin (°K)
2
Thermal conductivity Btu in./hr ft” °F 0.1240 kg cal/hrm °C

Prefixes to indicate multiples of units are as follows:

Prefix Multiple

giga (G) 109
mega (M) 106
kilo (k) 10°
milli (m) 1073
micro (u) 1()“6

1 . .
The International System of Units [ Systeme International (SI)] was adopted by the
Eleventh General Conference on Weights and Measures, Paris, October 1960, in
Resolution No. 12,

2
Multiply value given in U.S. Customary Unit by conversion factor to obtain
equivalent value in SI unit,
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1

INTRODUCTION

1.1 GENERAL

This handbook presents practical methods for the structural stability analysis of
sandwich plates and shells. The configurations and loading conditions covered here
are those which are likely to be encountered in aerospace applications. Basic equa-

tions, design curves, and comparisons of theory against test data are included.

For the purposes of this handbook, a structural sandwich is defined as a layered
construction formed by bonding two thin facings to a comparatively thick core as
depicted in Figure 1.1-1, The facings provide practically all of the over-all bending
and in-plane extensional rigidity to the sandwich. The core serves to position the
faces at locations removed from the neutral axis, provides virtually all of the trans-
verse shear rigidity of the sandwich, and stabilizes the facings against local buckling.
Thus the structural sandwich concept is quite similar to that of a conventional 1
beam. The sandwich core plays a role which is analogous to that of the I beam web
while the sandwich facings perform a function very much like that of the I beam

flanges. The primary difference between these two types of construction lies in the

Numbers in brackets [ ] in the text denote references listed at end of each major
section (1; 2; etc.).
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fact that the transverse shear deflections are usually significant to the sandwich
behavior; whereas, for I beams, these deflections are only important for the special

case of relatively short, deep beams.

FACING

~

CORE

FACING

Figure 1.1-1. Typical Sandwich Construction

The sandwich is an attractive structural design concept since, by the proper choice
of materials and geometry, constructions having high ratios of stiffness-to-weight
can be achieved. Since rigidity is required to prevent structural instability, the
sandwich is particularly well suited to applications where the loading conditions are

conducive to buckling.

The use of sandwich construction in aerospace vehicles is certainly not a recent

innovation. The British de Havilland Mosquito bomber of World War Il employed



structural sandwich throughout the airframe. In this case, the sandwich was in the
form of birch face sheets bonded to a balsa wood core. Many other airplanes, includ-
ing the B-58, B-70, F-111, C-5A, etc., have taken advantage of the high strength-to-
weight ratio enjoyed by sandwich construction. Space vehicle applications have
included the Apollo spacecraft, the Spacecraft LM Adapter (SLA) fairings on the

Centaur and other launch vehicles, as well as propellant tank bulkheads.

In view of the ever increasing application of structural sandwich, it has become desir-
able to assemble a handbook which presents latest design and analysis criteria for the
stability of such construction. The practicing designer and stress analyst need this
information in a form suitable for easy, rapid use. This document is meant to fulfill
that need. However, it should be kept in mind that, in many areas, all practical
problems have not yet been fully resolved and one can only employ what might be re-
ferred to as a "best-available' approach. In these cases it is advisable to supplement
numerical computations with suitable testing. Such areas of uncertainty are identified
in this handbook in the sections dealing with the appropriate configurations and loading

conditions.

In the sections to follow a discussion is given of the basic principles behind the design
equations along with conclusions derived from an analysis of available test data. This
is followed by the design equations along with any limitations on their use. Also, to
facilitate their use, a table of these equations and restrictions immediately precedes
the list of references in Sections 2, 3, 4, and 5 since these sections cover a wide

range of loading conditions and considerations.
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1.2 FAILURE MODES
Structural instability of a sandwich construction can manifest itself in a number of
different modes. The various possibilities are as described below and as shown in

Figures 1.2-1 through 1.2-3.

'Intracellular Buckling (Face Dimpling) - This is a localized mode of instability

which occurs only when the core is not continuocus. As depicted in Figure 1.2-1, in
the regions directly above core cells (such as those of a honeycomb core), the
facings buckle in plate-like fashion with the cell walls acting as edge supports. The
progressive growth of these buckles can eventually precipitate the buckling mode

identified below as face wrinkling.

Face Wrinkling - This is a localized mode of instability which manifests itself in the
form of short wavelengths in the facings, is not confined to individual cells of
cellular-type cores, and involves the transverse (normal to facings) straining of the
core material., As shown in Figure 1.2-1, one must consider the possible occurrence
of wrinkles which may be either symmetrical or antisymmetrical with respect to the
middle surface of the original undeformed sandwich, As shown in Figure 1.2-2,

final failure from wrinkling will usually result either from crushing of the core,
tensile rupture of the core, or tensile rupture of the core-to-facing bond. However,
if proper care is exercised in the selection of the adhesive system, one can reason-
ably assume that the tensile bond strength will exceed both the tensile and com-

pressive strengths of the core proper.
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A - Intracellular Buckling (Face Dimpling)
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Figure 1,2-1, Localized Instability Modes
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of Bond of Core Proper

Figure 1,2-2, Ultimate Failures Precipitated by Face Wrinkling
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Shear Crimping - Shear crimping is often referred to as a local mode of failure but

is actually a special form of general instability for which the buckle wavelength is
very short due to a low transverse shear modulus for the core. This phenomenon
occurs quite suddenly and usually causes the core to fail in shear; however, it may
also cause a shear failure in the core-to-facing bond. Crimping will sometimes
occur in cases where relatively long-wave general instability first develops. In such
instances the crimp appears hecause of severe local transverse shear stresses at
the ends of buckle patterns. As the crimp develops, the general buckle may dis-
appear and a post-test examination would then lead to an erroneous conclusion as to

the mechanism which initiated failure.

General Instability - For configurations having no supplementary stiffening (such as

rings) except at the boundaries, the general instability mode is depicted in Figure
1.2-3A. The phenomenon involves over-all bending of the composite wall coupled
with transverse (normal to facings) shear deformations. Usually, transverse exten-
sional strains do not play a significant role in this behavior. Whereas intracellular
buckling and wrinkling are localized phenomena, general instability is of a more
gross nature. Except for the special case cited under the identification "Shear
Crimping", the wavelengths associated with general instability are normally con-

siderably larger than those encountered in intracellular buckling and face wrinkling.

For configurations having supplementary stiffening at locations other than the bound-
aries, the term general instability takes on new significance and reference is also

made to an additional mode identified as panel instability. For this case, general
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instability is as defined above but with the added provision that the buckle pattern
involves simultaneous radial displacement of both the sandwich wall and the inter-
mediate stiffeners. As shown in Figure 1.2-3B, the appropriate half-wavelength of
the buckle pattern must therefore exceed the spacing hetween intermediate stiffeners.
The example used in Figure 1.2-3B is that of a sandwich cylinder stiffened by a
series of rings which have insufficient stiffness to enforce nodal points at their re-

spective locations,

Panel Instability - This mode of instability applies only to configurations which have

supplementary stiffening at locations other than the boundaries. Figure 1.2-3C
depicts this mode by again using the example of a sandwich cylinder stiffened by a
series of rings. However, in this case the rings have sufficient stiffness to enforce
nodal points at their respective locations. The rings experience no radial deforma-
tion. Therefore, the half-wavelength of the buckle pattern cannot exceed the spacing
between rings. As in the case of general instability, this mode involves over-all
bending of the composite wall coupled with transverse shear deformations. Here

again, transverse extensional strains do not play a significant role in the behavior.

1-8



2

LOCAL INSTABILITY

2.1 INTRACELLULAR BUCKLING (Face Dimpling)

2.1.1 Sandwich with Honeycomb Core

2.1.1.1 Basic Principles

From a practical viewpoint, intracellular buckling can be regarded as flat-plate
behavior. Even where curvature is present, as in the cases of cylinders and spheres,
the honeycomb core cell size will normally be sufficiently small to justify such an
assumption. As noted from Reference 2-1, the critical stress for flat plates can be

expressed in the form

2 2
o, - KrMEE (Ez) €.1-1)
°r 7 12(-%°) \s
where
O,y = Critical compressive stress, psi.

k = Coefficient which depends on the plate geometry, boundary
conditions, and type of loading, dimensionless.

M = Plasticity reduction factor, dimensionless.

Ef = Young's modulus (for facing material in the case of intra-
cellular buckling), psi.

Ve = Elastic Poisson's ratio for facing material in the case of
intracellular buckling), dimensionless.



tr = Thickness of plate (Facing thickness in the case of intra-
cellular buckling), inches,

s = A selected characteristic dimension of the plate, inches,

It is convenient here to combine several of the constants in Equation (2,1-1) to obtain

mEr_(t) 2.1-2
U-CI' =K (1_1}63) s ( . _“)

2
(o 1- te\e
l_%] ] K<_Sf> .

To apply these equations to the case of intracellular buckling, it is only necessary to

or

define the dimension s and establish a corresponding value for K. In Reference
2-2, Norris took s to be equal to the honeycomb core cell size. By convention,

this is taken equal to the diameter of the largest circle that can be inscribed within
the cell. Based on the analysis of test data, Norris then chose K = 2.0 for the
case of uniaxial compression. This provides a reasonably good fit to the test results
as shown in Figure 2.1-1 which was taken directly from Reference 2-2. It should be
noted that the choice of K = 2,0 does not provide a lower bound to the data., Six of
the test results fall significantly below the values predicted by the recommended
formula. This situation can be tolerated since the dimpling of several cells in a
honeycomb sandwich construction will not lead to catastrophic failure so long as a
sufficiently large number of cells remain unbuckled. As indicated by the scatter in
Figure 2.1-1, one could reasonably expect the majority of unbuckled cells to possess
considerably greater buckling strengths than would be indicated by the proposed

design curve. Under these conditions, some redistribution of stress would occur
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but the structure could continue to support the applied load. In addition, it is pointed
out that the dimpled regions retain significant post-buckling load-carrying capability
since they behave essentially as flat plates. This does not mean, however, that one

can permit the dimples to grow without bound. The point can be reached where these

deformations precipitate wrinkling and this cannot be tolerated.

It is also of importance to note here that most of the test data shown in Figure 2.1-1
were obtained from sandwich plates having a solid spruce core through which a
single circular hole was drilled to represent a core cell, It is questionable that
such specimens truly simulate the cell edge support likely to be encountered in
practical honeycomb configurations. Only three data points were obtained for speci-
mens actually having honeycomb cores and, as shown in Figure 2.1-1, these points

lie in the lower region of the total band of scatter.

In view of the foregoing discussion, it is evident that the use of Equation 2.1-3
together with the selection of K = 2.0 is certainly not a rigorous approach to the
analysis of intracellular buckling. However, until further work is accomplished in
this area, it is recommended that this criterion be employed as a 'best-available",

approximate design tool.
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2.1.1.2 Design Equations and Curves
The facing stress at which intracellular buckling will occur under uniaxial compres-

sion is given by the following semi-empirical formula:

MEs te\2 > 1.4
Tr = 2.0 o3 (5 (2.1-4)

The dimension s is the diameter of the largest circle that can be inscribed within

the cell shape. For example, in the cases of hexagonal and square cells, s is

measured as shown below.

TN
P
/

S

7T

Figure 2,1-2. Definition of Dimension s

Solving Equation (2.1-4) for s gives the result

ol

Oer (1‘Ve2)]_ 2.1-5)

=t N2
o [

This equation may be used to determine the maximum permissible cell size corre-
sponding to particular facing materials and thicknesses. Figure 2.1-3 presents a
family of plots of Equation (2.1-5) for selected values of t¢ ranging from te =

0.001 to tf = 0.100.

For elastic cases, use 7 = 1. Whenever the behavior is inelastic, the methods of

Section 9 must be employed.
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When the facings are subjected to biaxial compression, it is recommended that one
use the interaction formula
Ry + Ry =1 (2.1-6)

where

Applied Compressive Loading]
Ri = = in Subscript Direction
1= [Critical Compressive Loading (when]

(2.1-7)
acting alone) in Subscript Direction
This straight-line interaction relationship is based on the information provided in
Reference 2-1 for square flat plates., For cases involving shearing stresses which
are coplanar with the facings, it is recommended that the principal stresses first be
computed and that these values then be used in the above interaction equation. When-
ever one of the principal stresses is tensile and the behavior is elastic, the analysis
should be hased on the assumption that the compressive principal stress is acting

alone,



2.1.2 Sandwich With Corrugated Core

2.1.2.1 Basic Principles

This section deals with corrugated-core sandwich constructions whose cross sections
may be idealized as shown in Figure 2.1-4. For cylinders, the only case treated
here is that where the axis of the corrugations is parallel to the axis of revolution.
For flat plates, however, the corrugations can be oriented in either the longitudinal

or transverse directions,

N anli e ) \ ,
7RI R
T T R R o o

Q(TYPIC /\t

Single-Truss Double-Truss

Figure 2,1-4, Corrugation Configurations

Each of the following loading conditions is considered:
a. Uniaxial compression acting parallel to the axis of the corrugations.

b, Uniaxial compression acting parallel to the facings but normal to the
axis of the corrugations,

c. Biaxial compression resulting from combinations of a and b above.
The design curves presented here are taken directly from Reference 2-3 and are

based entirely on theoretical considerations, No comparisons are made against test
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data to confirm the validity of these solutions. Until such substantiation is obtained,
the recommended design curves can only be considered as a '"best-available' criterion.
It is pointed out, however, that there does not appear to be any reason to suspect that

test data would disagree with the curves.

Although Reference 2-3 is devoted solely to flat plates, the results are considered to
be applicable to the cylindrical configurations shown in Figure 2,1-4 since the dimen-
sions by will usually be small with respect to the radius. Under such conditions,

curvature influences will be negligible.

The theoretical development includes consideration of each of the buckling modes
shown in Figure 2.1-5, Both of the following possibilities are covered:
a. The face sheets are the unstable elements and are restrained by the core.
b. The core is the unstable element and is restrained by the face sheets.
Buckling is assumed to be accompanied by rotation of the joints but with no deflection
of the joints. The angles between the various elements at any one joint are taken to
remain unchanged during buckling. It is also assumed that the over-all sandwich

dimensions are sufficiently large such that end effects are negligible.



a ~-a

SN

Clomped

Single-Truss~-Core Double-Truss~Core

(a, B, and Y denote angles of rotations at the appropriate joints)

Figure 2.1-5. Buckling Modes




2,.1.2.2 Design Equations and Curves
The theoretical stress at which intracellular buckling of the facings or buckling of the
corrugated core will occur is given by the following formula:
kim®nE  fte\
g = £ 2.1-8
T T 12(-52) \bg ( )
where
ooy = Critical compressive stress, psi.

ki = Coefficient which depends upon the geometry and loading
conditions, dimensionless,

7 = Plasticity reduction factor, dimensionless.
E = Young's modulus of facings and core, psi.
Ve = Elastic Poisson's ratio of facings and core, psi.

ty = Facing thickness, inches.
bg = Pitch of corrugated core (see Figure 2.1-4), inches.
The only case considered here is that where the two facings are of the same thickness
and the entire sandwich construction (facings and core) is made of a single material.
Figures 2.1-6 through 2.1-12 give values for k; for each of the following loading
combinations:
a. k, when k;, =0
b. ky, when kj', = 0.5
c. ky when ky = 1.0
d. ky when ki = 0

The coefficients kx and ky are defined as follows:

2-11



12(1- v&) [bs\° . '
x = W t_f (Applied Compressive 0y) 2.1-9)
. 12(-u#) fbr)2 , ,
ky =T nE t (Applied Compressive Ty) (2.1-10)

The subscript x or k and k”) is used to identify cases where the loading is
directed along the axis of the corrugations (x direction). The subscript y or k
and k7) is used to identify cases where the loading is acting in the y direction which
is parallel to the facings but normal to the axis of the corrugations. For combinations
a through ¢, separate plots are furnished for single-truss-core and double-truss-
core configurations. For combination d, a single family of curves covers both
arrangements since all of the corresponding applied load is transferred through the
facings. The dashed lines in Figures 2,1-6 through 2,1-11 divide the charts into two
regions, Above the dashed lines, the face sheets are the unstable elements and are
restrained by the core. Below the dashed lines, the core is unstable and is restrained

by the face sheets.

To clarify the design charts given in Figures 2.1-6 through 2.1-12, the following
additional definitions are provided:

to = Thickness of material from which the corrugations are formed
(see Figure 2,1-4), inches,

¢

i

Angle shown in Figure 2,1-4, degrees.
In addition, the sample problem given below should be helpful to the user of this

handbook.
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Given: Sample Problem Data for Single-Truss Core Type Sandwich Panel

E = 30 x 10°psi to = .016" by = , 700"

ve = .30 tg = ,020" ¢ = 65°

Proportional Limit c= 90,000 psi oy = 16, 300 psi (Compression)
Required: Find Gcrx; Assuming 7 = 1, one obtains

120, (1 - v,2) /be\ 9 700 Y
o e < £\ _ 12 x 16,300 x ,910 00 V' _ o 136

Yy  n'nEg tf 9.87 x 1 x 30 x 10° \,020
oo W8 g
te .020 °

Using linear interpolation between values given on Figures 2,1-7 and 2,1-8 one

obtains kx = 2,68,

Hence, the critical stress in the x direction (parallel to the corrugation axis) is
ky Mg/t
c = —— [
cry 12(1 - 1Y) (bf>

and, assuming M = 1, one obtains

2.68 x 9,87 x 1 x 30 x 10°/,020\ . )
ery = 12 x 910 < 700> = 59,300 psi (Compression)

The stress intensity oj (See Section 9) can now be computed as follows:

o3

[

V] T F
\/ax +0 Oy Ty + 37

y

100V (59.37 + (16.3)° - (59.3 x 16.3) + 0 = 53,100 psi

]

Since this value is below the proportional limit, the assumption 7 = 1 is valid,
In cases where the 0; value exceeds the proportional limit, the methods of Section

9 must be employed,
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2.2 FACE WRINKLING

2.2,1 Sandwich With Solid or Foam Core (Antisymmetric Wrinkling)

2.2.1,1 Basic Principles

The problem of face wrinkling has been treated by many investigators dating back as
far as 1940. The most important publications on this subject are listed as References
2-4 through 2-14. For the purposes of this handbook, it was decided that the results

in References 2-7 and 2-9 would be the most useful. The latter applies only to sand-
wich configurations which have solid or foam cores. The development there includes
consideration of both the symmetric and antisymmetric modes along with the influences
from initial waviness of the facings. It is pointed out that, when the core is sufficiently
thick, the wrinkle patterns of the two facings will be independent of each other and the
same critical load is obtained for the symmetric and antisymmetric modes. However,
for sandwiches having thinner cores, the core strains introduced by one facing influ-
ence the wave pattern in the other facing. Under these conditions, it was found that
sandwiches having solid or foam cores can be expected to wrinkle antisymmetrically.
The following governing equation was derived to predict this form of wrinkling for

isotropic facings subjected to uniaxial compression:

1
3
Cr = Q[UE E GJ 2.2-1)

1-%")

il

Facing wrinkling stress, psi.

Plasticity reduction factor, dimensionless,

3
n

Ef = Young's modulus of facing, psi.
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Ec = Young's modulus of the core in the direction normal to the facings, psi.

G, - Core shear modulus associated with the plane perpendicular to the
facings and parallel to the direction of the applied load, psi.

Vo = Elastic Poisson's ratio of facings, dimensionless.

The quantity Q is the relative minimum, with respect to {, of the expression

& 16q(cosh;-1>

30 qﬁ‘ ¥ { \11 sinh [+ 5 2.2-2)
1+6.4Kgl (Tfissi:}f;%)
where
t 1-15° 3
4 - g Ge {”éf B¢ )Cj @5
SE
Kg = e FCC (2.2-4)
and
{ = Parameter involving the core elastic moduli, core thickness, and
buckle wavelength, dimensionless.
te = Thickness of core, inches.
te = Thickness of facing, inches.,
§ = Amplitude of initial waviness in facing, inches.
F. = Flatwise sandwich strength (the lower of flatwise core compressive,

flatwise core tensile, and flatwise core-to-facing bond strengths),
psi.

The initial waviness plays an important role in the wrinkling phenomenon since it
causes transverse facing deflections to develop even when the applied loading is very
small. As the load increases, these deflections grow at steadily increasing rates and

lead to transverse tensile or compressive failure of the core or tensile rupture of the



core-to-facing bond. These failures occur, of course, at load values below the pre-

dictions from classical theory in which it is assumed that the facings are initially

perfect (Kg = 0).

The results from Reference 2-9 can be summarized in the form of Equation (2.2-1)
accompanied by plots of Q vs g with Kg as a parameter. A family of such curves
is given in Reference 2-9 and they are of the general shape shown in Figure 2.2-1,
The limiting values established by the straight line 0A correspond to the shear
crimping mode of failure (see Section 2.3). All other points on the curves are for
antisymmetric wrinkling. In actual practice, curves of this type do not prove to be
very helpful since the K8 values appropriate to particular structures are rarely
known. Therefore, in order to provide a practical means for the prediction of face
wrinkling in sandwich constructions having solid or foam cores, it has become com-
mon practice to select a single conservative lower-bound Q based on available test
data. This approach is followed here. Elastic test data selected from Reference 2-9
are plotted in Figure 2.2-2 from which the value Q = 0.50 has been selected as a
safe design value. Additional data are given in Reference 2-6 which are not shown
here but lead to the same value for a lower-bound Q. This is in conformance with
the observation made by Plantema in Reference 2-15 that the value Q = 0.50 has
often been recommended for practical design purposes, However, since much of the
existing test data were obtained from specimens that were not very representative of
configurations likely tobe encountered in realistic structures, the selection of @ =0.50

can only be regarded as a "best-available' approach. In view of the uncertainties
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5 Constant

0
q

Figure 2.2-1. Typical Variation of Q vs. ¢q

involved, it is recommended that for the verification of final designs, wrinkling tests
be performed on specimens which are truly representative of the actual configuration.
The method presented here for the prediction of wrinkling should only be regarded as

an approximate guideline.
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2.2.1.2 Design Equations and Curves
The following equation may be used to compute the approximate uniaxial compressive
stress at which face wrinkling will occur in sandwich constructions having solid or

foam cores:

Y
NEf E¢ Ge|?
Owr = I: T (2.2-5)

(1-ve?)
In cases where the amplitude of initial waviness is known, one can use the curves of
Figure 2.2-3 to establish Q. Whenever such information is unavailable, it is recom-

mended that the value Q = 0.50 be used to obtain a lower-bound prediction,

For elastic cases, use 7= 1, Whenever the behavior is inelastic, the methods of

Section 9 must be employed.

When the facings are subjected to biaxial compression, it is recommended that one use

the interaction formula

Ry + Ry = 1 (2.2-6)
where

o [Applied Compressive Loading in Subscript Direction]
! {Critica] Compressive Loading (when acting alone) in}
Subscript Direction

2.2-7)

and the y direction corresponds to the direction of maximum compression. This inter-
action relationship is based on the information provided in Reference 2-1 for rectangular
flat plates having very large aspect ratios. For cases involving shearing stresses which
are coplanar with the facings, it is recommended that the principal stresses first be
computed and that these values then be used in the above interaction equation., When-

ever one of the principal stresses is tensile and the behavior is elastic, the analysis

should be based on the assumption that the compressive principal stress is acting alone.
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2.2.2 Sandwich With Honeycomb Core (Symmetric Wrinkling)

2.2.2.1 Basic Principles

As noted in Section 2.2.1.1, the results of Reference 2-9 apply only to sandwich con-
figurations which have solid or foam cores. However, the basic theory of that report

is capable of extension to constructions having honeycomb cores and this is accomplished
in Reference 2-7. The extension is achieved by incorporating conditions which recog-
nize that the honeycomb core elastic moduli in the plane parallel to the facings are

very small in comparison with the core elastic moduli in the direction normal to the
facings. Full consideration was given to both the symmetric and antisymmetric wrin-
kling modes along with the influences from initial waviness of the facings. However,

in this case it was found that, except for the region controlled by shear crimping (low g),
symmetric wrinkling develops at stress levels which are lower than those at which the
antisymmetric mode will occur. Based on this observation, the development of Refer-
ence 2-7 resulted in the following equation for the prediction of wrinkling for isotropic

facings in sandwich constructions having honeycomb cores and subjected to uniaxial

compression:
2
Ec tf
0.82\——/— E
Oy = <'7Ef t°> T 2.2-8
wr 1 + 0,64 Ka @. )
where
K $ E¢
= 2.2-9
5 ", Fo ( )



Owr = Facing wrinkling stress, psi.

E. = Young's modulus of the core in the direction normal to
the facings, psi.

ts = Thickness of facing, inches.

n = Plasticity reduction factor, dimensionless.

Ef = Young's modulus of facing, psi.

te = Thickness of core, inches.

§ = Amplitude of initial waviness in facing, inches.
F, = Flatwise sandwich strength (the lower of flatwise core compres-

sive, flatwise core tensile, and flatwise core-to-facing bond
strengths), psi.

Equation (2.2-8) can be used to plot a family of design curves of the form shown in
Figure 2.2-4. It should be noted that the curve for Kg = 0 is an upper-bound classi-
cal value which is based on the assumption that the facings are initially perfect. This
particular curve agrees very closely with the following symmetrical wrinkling equation

recently obtained by Bartelds and Mayers [2-14]:

£
Ec tf
Owr = 0.86 l:nEf tc] (NEf) (2.2-10)

Comparison of Equations (2.2-8) and (2.2-10) shows that, when K5 = 0, the former
gives critical stresses which are approximately 5 percent less than those obtained by

Bartelds and Mayers [2—14].

Numbers in brackets [ Jin the text denote references listed at end of each major
section (1; 2; etc.)



KOZO

Twr KO = Constant
77Ef

K(5 = Constant

M

Eolp
<77Ef te )

Figure 2.2-4. Typical Design Curves for Face Wrinkling in Sandwich
Constructions Having Honeycomb Cores

In actual practice, curves of the type shown in Figure 2.2-4 do not prove to be very
helpful since the K(S values appropriate to particular structures are rarely known.
Therefore, in order to provide a practical means for the prediction of face wrinkling
in sandwich constructions having honeycomb cores, a lower-bound approach is taken

in this handbook. For this purpose, test data selected from References 2-7 and 2-10
are plotted in Figure 2.2-5. All of the specimens from Reference 2-7 failed within the
elastic range. Several of these failures occurred by means of shear crimping and
these data were discarded. For the remaining tests reported in Reference 2-7, three
data points are plotted in Figure 2.2-5 for each group of nominally identical specimens.
One point is plotted for the maximum test value for the group, one point for the mini-
mum, and one point for the average. The data from Reference 2-10 were selected in
a similar manner with several added restrictions. A number of these specimens
wrinkled under highly inelastic conditions. Since rather crude plasticity reduction
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factors (1= E{/Ef) were uscd in the data reduction, it was decided to plot data only
for those specimens which wrinkled at stress levels where (E¢ /Ef) >0.85. In addi-
tion, many of the test specimens of Reference 2-10 had very poor core-to-facing honds
as measured by flatwise tensile strengths. It was thercfore decided to plot data only
for those specimens whose flatwise tensile strengths were al least equal to the flatwise
compressive strengths. Adhesive technology has now advanced to the point where, with
proper care, one can usually select an adhesive system which satisfies such a require-

ment.

Based on the plot of Figure 2.2-5, the relationship

1

_{Ect
Typ = 0.33 <nEf tc> (NEy) (2.2-11)

has been selected here to provide safe design values. This implies that a knock-down
factor of approximately 0.4 is applicable to this wrinkling phenomenon. Obviously,
this is not a rigorous approach to the problem and it would be advisable to base the
design equation on a much wider selection of test data of specimens which were truly
representative of contemporary practical designs. Therefore, Equation (2.2-11) can
only be regarded as a 'best-available' approach and it is recommended that, for veri-
fication of final designs, wrinkling tests be performed on specimens that actually dup-
licate the selected sandwich configuration. The method presented here should only be

regarded as an approximate guideline.
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2.2.2.2 Design Equations and Curves
The following equation may be used to compute the approximate uniaxial compressive

stress at which face wrinkling will occur in sandwich constructions having honeycomb

cores:
Eq 4 \2

0.82| — (MEf)
= TEf te 2.2-12
Twr 1+ 0.64K, : )

where

K, = SEe 2.2-13
6 - tc Fc ( . )

In cases where the amplitude of initial waviness is known, one can either use these
equations or the curves given in Figures 2.2-6 and 2,2-7 to establish the wrinkling
stress. Both of these figures are taken directly from MIL-HDBK-23 [2-16]. When-
ever the initial waviness is unknown, it is recommended that the following equation be

used to obtain a lower-bound prediction:

Eo tr \2
Oyp = 0.33 <71Ef tc> (MEs) @2.2-14)

For elastic cases, use 77 = 1, Whenever the behavior is inelastic, the methods of

Section 9 must be employed.

When the facings are subjected to biaxial compression, it is recommended that one use

the interaction formula
a
Ry + Ry =1 (2.2-15)
where

R: - _[Applied Compressive Loading in Subscript Direction] 9 2-18
1o [Critical Compressive Loading (when acting alone) in] (2.2-16)

Subscript Direction
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and the y direction corresponds to the direction of maximum compression. This
interaction relationship is based on the information provided in Reference 2-1 for
rectangular flat plates having very large aspect ratios. For cases involving shearing
stresses which are coplanar with the facings, it is recommended that the principal
stresses first be computed and that these values then be used in the above interaction
equation. Whenever one of the principal stresses is tensile and the behavior is elastic,

the analysis should be based on the assumption that the compressive principal stress

is acting alone.
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2.3 SHEAR CRIMPING

2.3.1 Basic Principles

To understand the phenomenon of shear crimping, one must keep in mind that this
mode of failure is simply a limiting case of general instability. The equations for
prediqting shear crimping emerge from general instability theory when the analytical
treatment extends into the region of low shear moduli for the core. For example, the
theoretical derivation of Reference 2-17, as reformulated in Section 4.2.1.1 of this
handbook, yields the result that, when the two facings are of the same material, shear
crimping will occur in axially compressed sandwich cylinders whenever

Vo2 2 (2.3-1)

where

(o)

Ocrimp

h 2Nt tp
g, = - = -

h2
Terimp = T Gy tg 0¥ (2.3-4)

71 = Plasticity reduction factor, dimensionless,
Ef = Young's modulus of facings, psi.
h = Distance between middle surfaces of facings, inches.

R = Radius to middle surface of cylindrical sandwich, inches.

Ko
©
=
Q.

&

It

Thicknesses of the facings (There is no preference as to which
facing is denoted by the subscript 1 or 2.), inches,

V, = Elastic Poisson's ratio of facings, dimensionless.
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t. = Thickness of core, inches.

Gy Cure shear modulus associated with the plane perpendicular to the
tacings and oriented in the axial direction, psi.

The critical stress can be determined from the equation

Ocr  Ke 0, (2.3-5)

and, when the Inequality (2.3-1) holds true, K. can be computed as follows:

1
- Ko @ {,: (2.3-6)
Hence,
erimp
Toy = o, Yo Yerimp (2.3-7)

Therefore, when the two facings are made of the same material, the following equation
can he written for the critical slress for shear erimping in a circular sandwich cylinder
under axial compression:

o b G (2.3-8)

. T - ——— I -
cr : } %7 .
crimy Lttt

An cquivalent result can he obtained from Reference 2-i# for sandwich cylinders sub-
jeeted to anifortg extorani lotepral pressure, Vh

al s, wivere Lpe two facings are made

of the same matericl], ore can write

h®
Top = (rcrimp = *’-——(tl Tt t(- Gyo, (2.3-9)

where

Gy, - tove shone modulus assoelated with the plane perpendicular to the

wdds ol revolution, psi,



In addition, the development of Reference 2-19 leads one to the following formula for
circular sandwich cylinders under pure torsion and having both facings made of the
same material:

h2
Ter = Terimp = RSN JGxz Gy, (2.3-10)

It should be noted that, although Equations (2.3-8) through (2.3-10) were derived for
sandwich cylinders, all of these final expressions are independent of curvature. Thus,

these equations have a general applicability which is not limited to the cylindrical con-

figuration.
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2.3.2 Design Equations
The following equations may be used to compute the facing stresses at which shear

crimping will occur in sandwich constructions having both facings made of the same

material:
a. For uniaxial compression acting coplanar with the facings (see Figure 2.3-1),
use
h2
; = — Gj; 2.3-11
Perimp T ({5 t;) to U @.3-11)
where
G;; = Core shear modulus associated with the plane perpendicular to

1

the facings and parallel to the direction of loading, psi.

o, psl

Figure 2,3-1. Uniaxial Compression
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b. For pure shear acting coplanar with the facings (see Figure 2.3-2}, use

h2
Tcrimp = m ‘GXZ GyZ (2.3—12)

Figure 2.3-2, Pure Shear

The foregoing equations are valid regardless of the overall dimensions of the structure,
in addition, no knock-down factors are required since shear crimping is insensitive to
initial imperfections. The predictions from these equations will be somewhat conserva-
tive since their derivations neglect bending of the facings about their own middle sur-
faces. Although such bending is of negligible importance to most sandwich buckling

phenomena, in the case of shear crimping this influence can be considerable.

Further mention of the shear crimping mode of failure is made in the various sections

on general instability included in this handbook.
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3

GENERAL INSTABILITY OF FLAT PANELS

3.1 RECTANGULAR PLATES

3.1.1 General

As previously noted, one of the potential modes of failure for sandwich panels is that
of general instability. This occurs when the panel becomes elastically unstable under
the application of certain types of in-plane loads. Further, it should be noted, the
loads which are critical for instability may or may not be of such magnitude as to

cause a failure of the basic materials.

The flat, rectangular sandwich panel represents that configuration for which the vast
majority of fabrication and test data has been accumulated over the past decade., This
is probably due to the fact that this configuration was best adapted to the structural
needs for a number of applications and that it represented the minimum in fabrication
problems and costs as far as this type of construction is concerned. By the same
token, analytical solutions have been developed for a wide range of loading applications
for flat panels, and an appreciable amount of testing for correlation with these solu-

tions has been accomplished.

As a consequence of this past work, it is now possible to employ the analytical solu-
tions for flat panels, as given in MIL-HDBK-23, [3-1], with a high degree of con-
fidence. This view is supported by recommendations given in References 3-2 through

3-17, inclusive, for basic panel design. Therefore, with this background in mind, the
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buckling coefficients, K, which will be given in this section for the various plate loading
conditions will be those taken from the applicable scctions of Reference 3-1, with no

rknock down'" factor to be applied to them,

The development of plate buckling coefficients for sandwich construction requires the
consideration of a number of factors, some are: 1) the degree of orthotropicity of the
face plates, 2) the usc of the same or of dissimilar materials for the face plates and,
3) the degree of orthotropicity of the core material. The gencral equations given in
the following sections account for these possibilities; however, the curves showing K
as a function of (a/b), V, the type of loading and edge support conditions will assume
the use of isotropic faceplate materials since this is largely typical of aerospace

vehicle design practices.

In all cases, the final design of the sandwich panel must comply with the following four
basic design principles, Reference 3-1;

a. The sandwich facings shall be at least thick enough to withstand the chosen
design stresses under the application of the ultimate design loads.

b. The core shall be thick enough and have sufficient shear rigidity and
strength so that over-all sandwich buckling, excessive deflection, and
shear failure will not occur under the design loads.

c. The core shall have high enough moduli of elasticity, and the sandwich
shall have great enough flatwise tensile and compressive strength such
that wrinkling of either facing will not occur under the design loads.

d. If the core is a cellular honeycomb or constructed of corrugated material
and dimpling of the facings is not permissible, the cell size or corrugation
spacing shall be small enough so that dimpling of either facing into the
core spaces will not occur under the design loads.
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Other requirements include the use of moduli of elasticity and stress values repre-
sentative of those values which prevail under the conditions of use. Also, where the
stresses are beyond the proportional limit, the appropriate reduced modulus of elas—

ticity should be used.

The following sections on specific types of panel loads define the appropriate equations
for each particular situation and discuss useful limits and other considerations, as
applicable. A summary table, (Table 3-1), listing the panel instability equations given
in the various parts of this section, along with a definition of terms, equation limitations
if any, and references for the appropriate buckling curves immediately precedes the list

of references to facilitate use of the manual for specific problem solution.

Figure 3.1-1 shows elastic properties and dimensions for the typical sandwich panel

under consideration in this section.
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Figure 3.1-1. Elastic Properties and Dimensional Notations
for a Typical Sandwich Panel

3-4



3.1.2 Uniaxial Edgewise Compression

3.1.2.1 Basic Principles

The buckling coefficient equations and curves given here for uniaxial edgewise com-
pression are those originally developed by Ericksen and March, [3-8], and are in-
cluded in the MIL-HDBK-23 documents, issued since then. The basic principles and
assumptions employed in the development of these general instability equations are
noted in the references and are not repeated here except where required to limit their

use because of the original restrictions imposed.

The basic equations for calculation of the allowable sandwich panel edgewise com-
pression loads are given in the following section, Curves for panel buckling coeffi-
cients for panels having isotropic faceplates and both orthotropic and isotropic cores

for various panel edge support conditions follow the equations,

3.1.2.2 Design Equations and Curves

As previously noted, the equations presented in this section are those developed by
Ericksen and March, and presented in MIL-HDBK-23, as well as in other documents.
Supporting data such as pertinent assumptions and definition of terms are also in-

cluded along with the equations.

Sandwich Panels With Honeycomb Cores

One of the basic assumptions used in the design and analysis of sandwich panels is
that the face plates carry the inplane loads applied and that the core provides that

shear support to the face plates required for them to act as a unit in preventing early
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individual buckling. From this, the edgewise compression capability of the panel is

given by the following equations, which are taken from Section 5.3, Reference 3-1:
N = @) K)®) (3.1-1)

where D is the sandwich bending stiffness. Solving this cquation for the facing stres-

ses gives the following:

Et)EL) o
e ) (B )
1“ o= 2K = 1 :).1—2
e TR W VR 00 12
For equal facings:
K . B’
F = — (h)j .l (3.1-3)
¢ 4 (B* A
where
K = buckling coefficient = KF + K‘\T (scc definitions in following
work) . '
z A ? %‘ . .. .
E° = (haEb)‘ = effective modulus of elasticity for orthotropic
facings,
= 1 -
X (I-n )
Kooty = Poisson's ratio as measured parallel to the subscript direction.
a
f,1,2 = subscripts denoting facings.

h,b

see Figure 3.1-1.

Since the buckling coefficient curves to bhe presented here are being limited to the case
of isotropic face plates, which is representative of the large majority of structural
sandwich applications, the affccted equations given previously are revised below for

this situation.
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For isotropic facings:
! 7 7
= E' = E! = nE; and = =L
Fai ™ By =By TonBpandp =g =
where ni = plasticity correction factor (see Section 9.0).

As noted above the buckling cocfficient for the panel under this loading condition is

given by the equation

K = KF+KM

where
(E1t,> + Eft.%) (Ejt, + Eft)
= 3.1-4
Kp 12E/t (E]t)h? Ky ( )
2 0
K = for the case where V=0 [see Figure (3.1-16)] (3.1-5)
Mo }%VI

Values of KF are generally quite small relative to KM’ thus a safe first approximation
is to assume it is equal to zero until a final panel check is made. On this basis, K

= }%\/I may be used to develop initial face plate and core thicknesses for the panel,

KM is a theoretical coefficient which is dependent on the sandwich panel bending and
shear rigidities and panel aspect ratio. Other factors which influence the magnitude
of this coefficient include the panel edge support conditions and the orthotropicity of
the core. A discussion of these considerations along with development of the equations
for calculation of this coefficient are given in References 3-1 and 3-8, This manual
does not propose to repeat these equations here; however, the curves shown in Figures
3.1-2 through 3.1-15 give values of KM as a function of edge support condition, panel
aspect ratio, and the bending-shear rigidity paramcter, V which is defined as follows

7D
vV = ey (3.1-6)
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which further can bc written as:

't Elt, Elts

Vo=
Ab=G_(Eft, + Elt)

72t E;tf
vV o= _é}\—i)_z‘_C}_ (for equal facings) (3.1-7a)
c

where U is sandwich shear stiffness; Ge is the core shear modulus associated with the
axes parallel to direction of loading (also parallel to pancl side of length a) and per-

pendicular to the plane of the panel.

An indication of the influcnce and importance of the core shear modulus may be obtained
from inspection of the above equations for V and the curves giving values of I%\’I given
later. Holding all terms constant except Gc’ an increase in its value reduces the value

of V to be used with the buckling coefficient curves, this reduced value then calls for

an increased value of KM.

Sandwich Panels With Corrugated Core

The equations and formulas previously given are for sandwich panels with honeycomb
cores; however, they may be adapted to cover the case of panels with corrugated cores
by means of the following modifications:

a. For the case where the corrugation flutes are oriented normal to the direc-
tion of the load application, the shear modulus in the direction parallel to
the flutes, G, is very high with respect to the shear modulus parallel to
the direction of loading, Gc ; thus, the previous curves may be used by
letting Gy, =« and R = Gca Gcb =0,

b. For the case where the corrugation flutes are parallel to the direction of
loading, the corrugations may be assumed to carry load in a direct pro-
portion to their area and elastic modulus. The parameter V for this case
is replaced by the parameter W, which is defined as
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Tt (El) (Blf)
N Gy, (Bl + ELt)

w (3.1-8)

Or, for equal facings,

= < ! 2 -
W = m°t Eit/2b7G (3.1-8a)

Values of KM as a function of (b/a), R = (Gca/GCb), and V, or W, are given for various
edge support conditions in Figures 3.1-2 through 3.1-15, with Figures 3.1-14 and

3.1-15 representing the case of panels having corrugated cores,

Figure 3.1-16 gives values of KM as a function of panel aspect ratio and edge support
0
conditions for use in determining values of KF in order that final values for K may be

obtained for specific designs.

The curves and equations just given may be used in developing a panel design in addi-
tion to checking the adequacy of an existing design; however, this is a slow iterative
process. As a consequence, this manual recommends the use of the design-procedures
approach described in Reference 3-1 since it was specifically developed to expedite the

new design process.
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KMO for Sandwich Panel with Isotropic Facings
in Edgewise Compression

Figure 3.1-16.
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3.1.3 Edgewise Shear

3.1.3.1 Basic Principles

As noted earlier in Section 3.1.1, sufficient analysis, design, and testing of flat sand-
wich panels has been accomplished to demonstrate the adequacy of the analytical
approaches presently in use. Thus, the panel buckling coefficient equations and
curves given in the following paragraphs for edgewise shear are those taken from the
MIL-HDBK-23 documents presently in use. These equations were originally developed
by Kuenzi and Ericksen [3-137 and employ the same general assumptions as those
described in Section 3.1.1. Specific limitations or restrictions on the use of these

equations will be noted where these require consideration.

The basic equations for use in calculation of the allowable sandwich panel edgewise
shear loads are given in the following section along with applicable background data
and assumptions. Design curves and buckling coefficients for panels having isotropic
faceplates and both orthotropic and isotropic cores for both simply supported and

clamped edge conditions follow the equations.

3.1.3.2 Design Equations and Curves
The design equations presented here are taken from Reference 3-1 and 3-13. Support-

ing data and design constraints are also noted and discussed as required.

The edgewise shear load carrying capability of a sandwich panel is given by the follow-
ing equation:
Neer = (Tf‘?/ba)(Ks)(D) (3.1-9)

sC
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where

Nscr = critical edgewise shear load, 1b per inch

D

il

sandwich bending stiffness

Solving this for the facing stresses gives the following equation:

(E1t)(Egt) (hI E] |

Fgy,- = TK E TET O (3.1-10)
Or, for equal facings
™ K, (h? E;
Fs = W (3.1-10a)
where
E’ is the effective modulus of elasticity of facing at stress Fg =nE
n = plasticity correction factor (Section 9.0)
X = 1-4°
p = w =pu, = Poisson's ratio of facings
h = distance between facing centroids (Figure 3.1-1)
b = panel width (<a) (Figure 3.1-1)
Ks = KF + KM (Note: These terms differ from those of Section 3.1.2)
where

(Et® + Et3) (Eit, + Eft) Ky

Kg = 12(E/t,)(E't,) h?

Or, for equal facings

o DR
F 3k

KMo = value ofKMforV=W=0
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The equation defining the value of KM is quite complex and involved, being dependent
on panel aspect ratio, (a/b), the number of half-waves, (n), for the minimum energy
buckle pattern, and the panel bending and shear rigidity parameter, (V, or W). This
manual proposes to follow general practice in the literature and provide curves only
for the definition of this buckling coefficient. Those interested in the basic equation

and its development will find this in Reference 3-13.

Values of KM are given in Figures 3.1-17 through 3. 1-24 as a function of the panel
aspect ratio and the parameter V, or W, for various panel edge support conditions.
These figures cover panels with isotropic faceplates and both isotropic and orthotropic
core, including panels using corrugated flutes for cores. Values of the buckling coeffi-

cient, KMO, may also be obtained from the same set of figures.

The equations defining the parameters V and W are the same as those given in the
previous section for edgewise compression; however, they are repeated below to

facilitate their use. The equation numbers previously assigned to them are retained

below
(Eft) (Eqt) (m tc
vV = .1-
AEN +EZt) (09 Gc (3.1-7)
a
= m2 ’ 2 .
V=ar tcEfttJZ)\b Gca (equal facings) (3.1-7a)

For a sandwich panel with a corrugated core in which the corrugation flutes are parallel
to the edge of length a, the parameter V is replaced by the parameter W which is de-

fined as follows:
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Tt (i) (Elt)
- xbzc;cb (Eft, + Elt)

(3.1-8)

Or, for equal facings

w

1

"ztc E;tf/z Ab? Gy, (3.1-8a)
In checking a particular design for the critical buckling stress, Fscr’ Figures 3,1-17
through 3.1-21 should be used for those panels having all edges simply supported.
Curves of KM for sandwich panels having all edges clamped are given in Figures
3.1-22 through 3.1-24. These curves may be interpolated in order to obtain the

buckling coefficients for other values of core orthotropicity, (R = Gca/GCb), and inter-

mediate values of V or W,

It should be noted that if the resulting value of Fscr is above the proportional limit
value, the value of E’ shall be an effective value based on that stress level, and this
effective value shall be used in computing the value of V, Equation (3. 1-7) or (3.1-7a)
or W, Equation (3.1-8) or (3.1-8a), as the case may be. This same effective value
for E/ shall also be used in Equation (3.1-10), or (3.1-10a) when calculating the criti-
cal panel buckling stress. Thus, several interations will be required to establish the

actual value of Fscr in those cases where it exceeds the proportional limit.

The equations and curves just given may be used in the development of panel designs
as well as in checking an existing design; however, as was the case for uniaxial com-~
pression, this is a lengthy iterative process. Thus, this manual recommends the use
of the design-procedures approach described in Reference 3-1 for those cases where

the initiation of new designs is required,
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Figure 3.1-20, Ky for a Sandwich Panel with All Edges Simply Supported,
2 T oetTey.

Isotropic Facings and Corrugated Core. Core
Corrugation Flutes are Parallel to Side a
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2.1.4 Edgewise Bending Moment

3.1.4.1 Basic Principles

The application of an edgewise bending moment to a flat, rectangular sandwich panel
produces a loading condition such as that shown in Figure 3.1-25. This represents a
somewhat different situation from the ones previously covered, since the tension loading
on one half of the panel represents a stabilizing effect. The edge compression load

on the other half of the panel varies linearly from zero at the neutral axis to a maxi-
mum value, N, at the panel edge. It is this compression loading which can produce
panel buckling in the same fashion as the uniaxial compression case; however, the
presence of the panel edge support along the line of maximum loading forces consider-

ation of a more complex failure mode.

These failure mode considerations for this type of loading have been covered in the
development of analytical techniques for the evaluation of flat plates (Reference 3-17).
Also, as has been previously noted, sufficient analytical development and testing has
been accomplished on flat, rectangular sandwich panels to enable the use of the buckling
coefficients given in Reference 3-1 for this loading condition with complete confidence,
The general equations for the behavior of flat, rectangular honeycomb sandwich panels
under this loading condition were developed by Kimel [3-15] while whose applicable to

panels with a corrugated core were developed by Harris and Auelman, [3-14]and [3-167.

The assumptions employed in the development of the basic equation for the panel sta-

bility coefficient for this loading condition are generally the same as those described
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in Section 3.1.1, with onec particular exception. This exception requires that the
critical design faceplate stress, Fcr’ shall not exceed the elastic buckling stress for
the faceplates, This requirement stresses the fact that the analysis is based on a
linear loading variation across the edge of the pancl. Once the elastic buckling stress
is exceeded this variation is no longer linear, and extrapolation to a buckling stress
beyond the elastic range of facing stresses cannot be done by using an effective elastic
modulus such as the tangent modulus, in the buckling formulas. Since the proper
extrapolation to stresses beyond the elastic range must consider the variation of
effective elastic modulus across the panel width associated with the stress variation,
the equations and buckling coefficients given here are thus strictly applicable only to

buckling at facing stresses within the elastic range.

The basic equations to be used in the calculation of the allowable sandwich panel edge
loading are given in the following section. Design curves and buckling coefficients
for panels having isotropic faceplates and both isotropic and orthotropic cores based

on simply supported edge conditions follow these equations.

3.1.4.2 Design Equations and Curves
The design equations presented here arc thosc taken from Reference 3-1. Background

assumptions and any applicable design constraints are also covered.

Using a linear stress variation as previously discussed, the value of N at the panel
edge is given by the equation:

N = 6M/b? (3.1-12)
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where

N = load per unit width of edge
M = edgewise bending moment
b = panel width (Figure 3.1-25)

The edgewise bending load capability of a sandwich panel is given by the following

equation, taken from Reference 3-1:

N, = (P/b)(K )D) (3.1-13)
where
Ncr = critical edgewise loading, 1b per inch
D = sandwich bending stiffness

The critical faceplate stresses are obtained by solution of the previous equation and

are as follows:

Et) Bl o ()

For,2 = TK) ELEL? 0 X (3.1-14)
Or, for equal facings,
2
Fc = ‘”_;}3 ﬁg% (3.1-14a)
where

E = modulus of elasticity of facing
A= (-7
u = Poisson's ratio of facings: B, = Hy assumed above
h = distance between facing centroids
b = length of loaded edge of panel

Il

Ky + Ky (Note: The values for these buckling terms differ
from those given in Sections 3.1.2 and 3.1.3)
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(El’cl:3 + Eztga) E4+ Eztg)

K_ = K 3.1-15
F 12(F,4) (E,L) (10 M, (8-1-15)
Or, for equal facings
2
K — w& 3 l lra)
F  2h? (3. 1-15

where

KM = valueofKMforV=W=0

(o]

Values of KM for panel buckling are given in Figures 3.1-25 through 3.1-28 as a func-
tion of the parameter V or W, and the panel aspect ratio, These cover panels having
isotropic faceplates using both isotropic and orthotropic cores, including those using

corrugated flute-type cores.

The equations defining the parameters v and W are the same as those given in the
previous section for edgewise compression; however, they are repeated below to
facilitate their use. The equation numbers previously assigned to them are retained

below; however, values of E’ are replaced by those of E for this case.

(B, ) (B L) (1)t

V = 3.1-
AEL +Et) ®>) Gca ( i

G- 2 i -
V = 'nztcEftt/Z)\b Gca (cqual facings) (3.1-7a)

For a sandwich panel with a corrugated core in which the corrugation flutes are parallel
to the edge of length a, the parameter V is replaced by the parameter W, which is de-

fined as follows:
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Tt () (E L)

W = 3.1-8
A bzG'cb (Eh+Et) ( )

Or, for equal facings,

w

1l

T° tc Eftt/Z)\ b= Gcb (3.1-8a)
A particular design may be checked by using the graphs given in Figures 3.1-25 through
3.1-28 to determine the appropriate value of the buckling coefficient to use in Equation
(3.1-15), or (3.1-15a) to compute the critical buckling stress, Fop. This approach,
which involves trial and error solutions by iteration, may also be employed to develop
new panel designs; however, this manual recommends that the design-procedures

approach described in Reference 3-1 be considered since it was set up to facilitate

such design calculations.
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3.1.5 Other Single Loading Conditions

A search of the literature, as well as contacts with a number of_people who have been
active in the analytical methods field for this type of construction, revealed no other
single loading conditions which might lead to panel instability problems. Consequently,
the previously described loading conditions represent the extent of the flat panel sta-

bility data which will be given here for individual loading cases.
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3.1.6 Combined Loading Conditions
3.1.6.1 Basic Principles
A study of the effects of combined loadings on the buckling of flat sandwich panels
requires the consideration of a number of factors. Some are:
a. The mode of failure of the panel under each of the applied loads.
b. The interaction between different modes for precipitation of panel
buckling or failure,
c. The influence of variations in the core shear rigidity values on the
interaction equations for panel instability failure under combined

loadings.

Since little specific testing for biaxial instability modes has been accomplished for
flat sandwich panels, this part of the manual will provide analytically developed
equations for combination of the stress ratios which are conservative for most appli-
cations. Additionally, some discussion of the considerations involved is included
along with appropriate references in case more specific solutions or background is

needed.

The equations given on the following pages cover the interaction relationships between
the stress ratios, (Ri = Ni/ Ni ), for each of the separate loadings which produce

cr
failure by overall panel instability under the action of the combined loads. For the

stress ratio relationships which produce panel failure by local instability only, refer

to Section 2. These latter equations and pertinent discussion are not repeated here
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although the specific equation number and report page are listed below for each of the
local instability modes:

a. Intracellular Buckling: Equation (2.1-6), Page 2-7.

b, Face Wrinkling (Asymmetric): Equation (2.2-6), Page 2-26.

c. Face Wrinkling (Symmetric): Equation (2.2-15), Page 2-35.

It should be noted that there are no known data available for potential panel failures
which might occur as a result of interaction between a local instability situation
arising from the loading applied along one edge in conjunction with a general insta-
bility problem arising from the loading applied along the panel edge perpendicular

to the first one. This situation might occur for panels having very high aspect

ratios; however, most of these would also indicate a potential local instability failure
under the action of the combined loads. In all cases, however, as has been previously
noted, tests should be run to substantiate a final design in all cases where there is

some question as to the structural adequacy of the sandwich component.

The effects of plasticity must be accounted for in calculating the stress ratios, Ri’ to
be used in the interaction equations which are given in later paragraphs. Referencce is
herewith made to the discussion and recommendations given in Section 9.2, COMBINED
LOADING CONDITIONS, in this report and in particular to Equation (9.2~1) or (9.2-1a).
Either of these equations define an effective uniaxial stress, 0 for use in determining
an effective plasticity reduction factor which accounts for the effects of the biaxial
stress field, Once the value of o is known, the plasticity reduction factor, 7, may

be calculated by means of Equation (9.2-3).
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3.1.6.2 Design Equations and Curves

The design equations and curves for combined loading conditions are separated into
those which should be used for sandwich panels having honeycomb cores and those to
be used with panels having corrugated cores. Supporting references are given for
each type and loading condition along with any limitations or restrictions on the use

of the interaction equation.

Sandwich Panels with Honeycomb Cores

The interaction relationships between the stress ratios which define the onset of general
instability buckling of honeycomb core panels under combined loadings are complex
functions of a number of factors. Some of these will be covered briefly here. One of
the prerequisites for the development of the interaction equation is the determination

of the number of half~waves in both the x and y directions for minimum energy plate
buckling. Since each of these is a function of not only its relationship with the other

but is also dependent upon the core shear rigidity parameter, V, the panel aspect

ratio, panel edge support considerations, etc., the establishment of general equations

covering all of these influences presents a formidable problem.

In view of the complexity involved in an exact definition of combined load interactions,
the writers of this manual propose the use of the following simplified stress ratio
relationships for panel buckling. These give somewhat conservative results over the

typical range of aerospace application and have been recommended for general use,

3-17.
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A,

Biaxial Compression. The following formula is recommended for estimating

buckling of a panel subjected to biaxial compression:

R +R =1 (3.1-16)
cX cy
where
Rc - N/Ncr
N = Loading along panel edge, Ibs/inch.
N = Critical loading along panel edge, lbs/inch., (See Equation
T 3.1-1.)
X,y = Subscripts denoting direction of loading. (See Figure 3.1-1.)

A plot of Equation (3.1-16) is given in Figure 3.1-29 to facilitiate its use in

making design checks.

As noted in References 3-1 and 3-23, the above equation is correct for square,
isotropic sandwich panels for which V~ 0, It becomes appreciably conservative
for panels of large aspect ratio, (a/b = 3.0) and for panels bordering on the weak
core regime (V = 0.3). For panels with aspect ratios of 2.0 or less, and which
have reasonably stiff honeycomb cores, Equation (3.1-16) provides a satisfactory

method for prediction of the onset of panel buckling.

Bending and Compression. Equation (3.1-17) provides a sufficiently reliable
method for the estimation of panel buckling under the action of combined bending
and compression loads.

ch+(RBX)3/2 =1 (3.1-17)
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where

R = N/NCr (Sec definition of Terms for Equation 3.1-16.)
= (N/N
RB N/ cr)bending

= Load per unit width of cdge due to edgewise bending, 1bs/in.

NC = Critical edgewise loading on panel due to bending moment,
t lbs/in. (See Equation 3.1-13.,)

Figure (3.1-30) plots the interaction relationship given by Equation (3. 1-17) to

enable its ready use.

References 3-19 and 3-23 are recommended, in case more accurate analysis

of this loading combination is desired.

Compression and Shear. The following interaction formula furnishes a depend-

able method for the prediction of panel buckling under this particular combination

of loads:
2 = 1 L1-1
R +(R) (3.1-18)

where

RC = N/Ncr (See definition of terms for Equation 3.1-16.)

= (N
Rs ( S/NSCI‘)
NS = Shear loading per unit width of panel edge, lbs/in.
Nscr = Critical edgewise shear loading, lbs/in. (See Equation 3.1-9.)

Equation (3.1-18) is plotted in Figure 3.1-31 to enable it to be more easily used
in the solution of specific problems. References 3-21 and 3-23 develop this

interaction relationship in greater depth for those needing this information.



D. Bending and Shear. The following interaction cquation represents a close
approximation of the buckling behavior of panels under combined edgewise

bending and shear loads.

R )2+ (R)2 =1 3.1-19
( B) ( S) ( )
where
R_ = (N/N ) . These terms are defined as before for
B cr hending . .
Equation (3.1-17).
R = (N/N ) As previously defined for Equation (3.1-18).
s s’ scr

Again, as for the previous combined loadings, Equation (3.1-19) is plotted in
Figure 5.1-32 to make it more easily and readily usable. Reference 3-19 pro-
vides additional background information on the development of this interaction

equation,

Sandwich Panels with Corrugated Cores

The interaction equations for predicting the onset of gencral instability failure for
sandwich panels with corrugated cores involve the consideration of a number of com-
plex relationships also, as for the honeycomb corec case. The same influences prevail
for fluted corrugations as before, with the additional consideration that the core shear
modulus normal to the direction of flute orientation is negligible in comparison to the
shear modulus measured parallel to the flutes. Also, the ability of the corrugations
to carry axial loading when it is applied along the axis of the flutes, further compli-
cates the problem since the distribution of this loading between the faceplates and the

flutes depends on the geometry and material thicknesses.



In view of the magnitude of the problem involved in developing specific equations for
the interaction relationships, this manual will take advantage of the extensive studies
in this area performed by Harris and Auelman, [3-14 and 3-167]. The latier reference
presents interaction equations for the prediction of the onset of panel buckling in the
form -of curves relating the buckling coefficients to each other as a function of panel
aspect ratio, the core bending-shear rigidity parameter, W, the relation between load
direction and flute orientation, and the ratio of the loading carried by the flutes with
respect to that carried by the faceplates. These interaction curves are repeated here
in Figures 3.1-33 through 3.1-42 for several values of the shear rigidity parameter,
W, and for the following additional relationships: 1) Panel aspect ratio, a/b = 1/2,
1.0, and 2.0, and 2) Amount of axial load carried by the core corrugations is negligible
with respect to that carried by the faceplates, i.e., DC/D = 0. (DC = hending stiffness

of corrugations, and D = bending stiffness of sandwich panel.)
A discussion of each of the sets of interaction curves follows.

A. Biaxial Compression. Interaction curves relating the buckling coefficients for
this combined load condition are given in Figures 3.1-33 through 3.1-35.
Buckling coefficients for other panel aspert vatios and different values of W

may be obtained by interpolation.

The following example problem is offered to demonstrate how these curves may

be used to predict the onset of panel buckling.

Given: Panel with NX = 2000 lbs/in, Ny = 400 lbs/in, a = 30 in, b = G0 in,

D= 3.0 x10°% lbs/in®, use W = 0 for example problem.



Figure 3.1-33 is used for this case since (a/b) = 1/2. The top line of this figure

applies since W = 0. The interaction equation takes the following general form:

R +R <1 (3.1-20)
cx cy
or
Nx Ny
+ 1 L1-
S < (3.1-21)
Xer ycr
where
ox’ Rcy = Stress ratios for loads in subscript directions, dimensionless.
N = Critical panel loading for loading applied in the x direction, =
XCT (/b3 () (D), Ibs per inch.
N = Critical pancl loading for the y direction, = (7°/b% (K ) (D),
ycr . y
lbs per inch.
K ,K = Buckling coefficients for loading parallel to the subscript
¥ direction.
Ef' e, + tf)2
D = Sandwich bending stiffness = 2—(1—23—— for equal facings.
K

W = 1° (tc) (Ef') (tf)/z ! —ufe) (b2) GCb for equal facings.

E’ = Effective Young's modulus for faces, psi.

f
Gcb = Core shear modulus in the direction parallel to the flutes, psi.
t = Thickness of core, inches.
c
tf = Thickness of faceplates, inches,

b = Poisson's ratio of faceplates.

a,b = Panel dimensions, inches.



Substituting in Equation (3.1-21):

N N
X + y <1.0 (3.1-22)
(K (r*)D/b?) (K ) (n°D/b?)

and, letting
r = N /N (3.1-23)
y X

then

Nxbz 1 r
(__> [_K_ + 'K_] <1.0 (3.1-24)
7D X y

Since D, b, Nx’ and r will be known for the design in question, and Kx and K
may be obtained from the appropriate curve, Equation (3.1-24) can be used in
checking the panel stability on the basis that the panel margin of safety is the

same for each loading direction. Thus,

(M.S.)_ (M.s.)y (3.1-25)

Neer Nycr
-1.0 = -1,
N 0 ( N > 1.0
X y

Nycr Ny
(N > = (’N—> =r (3.1-26)
XCTr X

From which

or

then

(Ky) (r*D/b?) K

e = (3.1-27)
2 2 K
(Kx) (m°D/b?) X
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Returning to the data given for the example problem to demonstrate the method
for checking panel stability:

r = N /N = (400/2000) = 0.20
y X -
Ky/Kx = 0,20, from Equation (3.1-27)
Using Figure 3.1-33, erect a line passing through the origin and having a slope

of K /KX = 0.20 and extend it until it intersects the line for W = 0. The coor-
y

dinates of this intersection point, as taken from the figure, are: K =6.0,
X

and K =1.2,
y
Then,
= 2D/b?) = (6. .0 x 10°/602
N oor K @ /b3 = (6.0) (77 x 3.0 x 10°/607)
N o, = (6.0)(822.0) = 4930 1bs/inch
N = K (7°D/b2) = (1.2) (822.0) = 986 lbs/inch
yer Yy —

Solving Equation (3.1-21) for a panel stability check:

2000 = 400
S 4 —— = 0,406 + 0.406 = 0.81
1930 986 06 0.406 0.812

Since the total is less than 1.0, the panel is stable under the applied loads. The

margin of safety for panel buckling is: M.S. = (1.0/0.812) - 1,0 = +0.232,
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Combined Compression Along Core Flutes and Shear. Figures 3.1-36 through
3.1-38 give curves showing the interaction relationships between the buckling
coefficients for panels loaded in this manner. Curves for other panel aspect
ratios and values of the shear rigidity parameter may be developed by inter-
polation from those given. Panel stability checks for this combined loading
condition are made in the same manner as for the hiaxial compression case.
This is accomplished by handling the calculations for the RS term in the inter-
action equation in the same way as was done for the Rcy term in the example

given on page 3-53.

Combined Compression Normal to Core Flutes and Shear. Interaction curves
for the buckling coefficients covering this particular combination of loads are
given in Figures 3.1-39 through 3.1-41. These curves may be interpolated to
obtain values for the specific design under study and the stability checks may
be made in a similar fashion to those for the biaxial compression case. The
method to be used in performing design checks on panels loaded in this manner

is the same as that noted in item (B) above.

Combined Biaxial Compression and Shear. Figure 3.1-42 shows the relation-
ships for the compression and shear buckling coefficients for this loading con-
dition. These curves are for a square panei only, however, as may be noted
from the small change in the values of Ky between the various values of the
shear rigidity parameter, W, approximate interpolations may be made on the

basis of ratios obtained from the curves of Figures 3.1-36 through 3.1-38.
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Panel stability checks are made in basically the same manner as for the example
problem given on page 3-53, except that the stress ratio, RCV, is handled differ-
ently. The basic interaction equation for this condition takes the following

general form:

R +R
c

+R <1
cX s

y
where

R and R are as defined on page 3-54.
cx cy

jos]
I

— 2
(ny/Nscr) = [ny/(ﬂa/b ) (K D]

K
8

buckling coefficient for shear
Since, as may be seen in Figure 3,1-42, Ky is a function of W only for this case
and is independent of the values of KX and Ks’ the value for Rcy may be calcu-
lated imn. -diately and the interaction equation put in the following form:

ch + Rs = (1.0 - Rcy) : Or, ch + Rs = C
The design check may now be performed in the same way as for the example
problem on page 3-53, if the Rs term and calculations are handled in the same
way as the Rcy term and calculations were handled for the example. It is to be
noted, however, that the term on the right side of the equation, C, has a value
which is less than 1.0 and this value should be used in place of the 1.0 used in
the example. Thus, assuming Rcy =0.10, then C=1.0 -0.1=0.9, and the
margin of safety for panel buckling as calculated on page 3-57 for the example
would now become:

M.S. = (0.90/0.812) - 1.0 = +0.109
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Figure 3.1-29.
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Interaction Curve for a Honeycomb Core Sandwich

Panel Subjected to Bending and Compression

Figure 3,1-30.
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Interaction Curve for a Honeycomb Core Sandwich

Panel Subjected to Compression and Snear

Figure 3.1-31.
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Interaction Curve for a Honeycomh Core Sandwich

Panel Subjected to Bending and Shear

1-32,

Figure 3.
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3.2 CIRCULAR PLATES

3.2.1 Available Single Loading Conditions

A search of the available literature as well as contacts with others who are familiar
with sandwich panel stability references and studies in progress uncovered no stability
solutions for any single loading condition. This result might have been anticipated
since the flat, circular sandwich plate has very few applications in aerospace vehicle
structures in which it must be stable under the applied loads. Consequently, this
manual makes no recommendations for techniques to be used in design, and strongly
suggests that all final configurations be tested as required to demonstrate their ade-

quacy structurally.

3.2.2 Available Combined Loading Conditions

No panel stability solutions were found for any combined loading conditions applicable
to flat, circular plates in the course of the literature search noted in Section 3.2.1.
Consequently, this manual makes no recommendations for possible analytical ap~

proaches which would describe any stability limits for circular, flat sandwich plates.
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3.3 PLATES WITH CUTOUTS

3.3.1 Framed Cutouts

While it is highly desirable to avoid cutouts in aerospace structures because of the
attendant weight problems as well as uncertainties about load pile-up and redistri-
bution, these are a practical necessity because of access and other requirements and
every effort should be made to derive reliable design approaches which minimize these

drawbacks.

Most generalized solutions for plates with cutouts employ framing members and base
the analysis on the assumption of buckled skin panels which carry only shear loads.
Obviously, the solution becomes much more complex when skin buckling does not
occur, as would be the case for a framed cutout in a sandwich panel. Despite the
increased complexity, however, solutions for the load distribution around the cutout
can be obtained for various load applications away from the opening. Knowing the
load distribution adjacent to the cutout does not necessarily provide an answer to all
questions regarding the adequacy of the design, however, particularly in the case of

sandwich construction.

In the case of monocoque or semi-monocoque panels, the lateral moments of inertia
of the framing members are generally sufficiently greater than those of the skin such
that they may be considered to provide lateral support for the panel edge. This is not
necessarily the case for sandwich panels, thus setting up the case of a free, or nearly
free, edge for the panel and for which condition no general stability solutions or data

were found in the course of this study.
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It may be possible for specific designs to be assessed, on the basis of good engineering
judgment, to be critical in local instability rather than for general instability. This
being the case, design checks may be made on the basis of the equations given in
Section 2. This manual makes no recommendations for those cases where the general
instability mode appears to control beyond the exercise of good judgment in the devel-

opment of the design, and sufficient testing as needed to insure its integrity.

3.3.2 Unframed Cutouts

Unframed cutouts in sandwich panels have all of the disadvantages noted for framed
cutouts and represent a much more serious design problem locally, insofar as the

free edge is concerned. The writers of this manual encountered no instances in which
such a design approach was used in primary or secondary structure and, in general,
recommend avoidance of this practice, This recommendation is based not only on the
lack of any analytical or test data but also on potential problems of faceplate-core bond
separation along the free edge due to damage while in use, adhesive deterioration,

load cycling, etc.
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4

GENERAL INSTABILITY OF CIRCULAR CYLINDERS

4.1 GENERAL

In the case of axially compressed, thin-walled, isotropic (non-sandwich) cylinders, it
has long been recognized that test results usually fall far below the predictions from
classical small-deflection theory [4—1]. These discrepancies are usually attributed
primarily to

a. the shape of the post-buckling equilibrium path coupled with the presence
of initial imperfections

and
b. the fact that classical small-deflection theory does not account for pre-

buckling discontinuity distortions in the neighborhood of the boundaries.
Neglecting the discontinuity distortions, the equilibrium path for an axially com-
pressed perfect cylinder is of the general shape shown by the solid curve in Figure
4.1-1. This path is linear until point A is reached and general instability occurs at

a stress level 0 equal to the result from classical small-deflection theory

Et

7cL = = for elastic, isotropi - ich) cylinders|. H r, if
CL R /3(1-Ve) o astic otropic (non-sandwich) cylinders owever, i

the cylinder is initially imperfect and the discontinuity distortions are considered, the
behavior will be as shown by curve 0B and buckling will occur at the stress o¢r. The
rrtio (Ooy /0c1,) will be dependent upon the magnitude of the initial imperfections pres-

ent in the cylinder. However, since this information is not normally available, one
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usually finds it necessary to resort to either of the following practices to obtain practi-

cal design values:

a, Set the allowable compressive stress equal to the value TMIN shown in

Figure 4,1-1.

b. Use the classical small-deflection value Ocp, in conjunction with a suitable

knock-down factor ¥, which is based on the results from a large array of

test data, The allowable compressive stress is then obtained from

°cL
Axial
Compressive
Stress
Ocr
IMIN

Ier = Y %L

(4.1-1)

Perfect

Cylinder
-« — Imperfect

Cylinder

End Shortening

Figure 4.1-1, Equilibrium Paths for Axially

Compressed Circular Cylinders

For isotropic (non-sandwich) cylinders it is common practice to follow the second of

these approaches and, for such cylinders, the test data shows that Yc is a function of

the radius-to-thickness ratio (R/t).



In the case of sandwich cylinders having relatively rigid cores, the behavior is similar
to that of the isotropic (non-sandwich) cylinder and one can expect imperfections and
boundary disturbances to precipitate general instability at compressive stresses below
the predictions from classical small-deflection sandwich theory, However, in most
practical applications, the sandwich wall will provide an effective relatively thick shell
so that the discrepancies will not be as large as those normally encountered in thin-
walled isotropic (non-sandwich) cylinders, In addition, as the core transverse shear
rigidity decreases, the differences between test results and classical predictions will
diminish. In the extreme case where shear crimping occurs, initial imperfections do

not appear to have any influence,

One of the most prominent of the early design criteria developed for axially compressed
circular sandwich cylinders is that of Reference 4-2. This solution employed large-
deflection theory together with approach (a) cited above (0.r = Opqn). However, it is
now rather generally agreed that this criterion often provides design values which are
too conservative. In addition, the theoretical development of Reference 4-3 indicates
that oy can be decreased to essentially zero by including a sufficient number of
terms in the large-deflection displacement functions, Therefore, in recent years, it
has become common practice to design sandwich cylinders by method (b) cited above
[4-4 and 4-5]. This approach, which employs small-deflection theory in conjunction

with an empirical knock-down factor, is likewise followed in this handbook,

In the treatment of various types of external loading, it is important to note that the
characteristics of the equilibrium paths are not identical for cases of axial compres-

sion, torsion, or external radial pressure. For purposes of comparison, Figure 4.1-2

4-3



depicts the general shapes of these paths for each loading condition [4-6] assuming

that the cylinders are initially perfect and that no discontinuity distortions are present.

Stress
Stress
Stress

Deflection Deflection

Deflection
External Pressure

Axial Compression Torsion

Figure 4.1-2, Typical Equilibrium Paths for Circular Cylinders

Based on the relative shapes of these curves, one would expect that, under torsion or

external pressure, the cylinders would be much less sensitive to initial imperfections

than in the case of axial compression, This has been borne out by the available test

data from thin-walled isotropic (non-sandwich) cylinders.
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4.2 AXIAL COMPRESSION

4.2,1 Basic Principles

4.2.1.1 Theoretical Considerations

The theoretical basis used here is the classical small-deflection solution of Zahn and

Kuenzi [4-7] which includes the following assumptions:

a.

The facings are isotropic but the core may have orthotropic transverse
shear properties.

Bending of the facings about their own middle surfaces can be neglected.
The core has infinite extensional stiffness in the direction normal to the
facings.

The core extensional and shear rigidities are negligible in directions
parallel to the facings.

The cylinder is not extremely short (a quantitative limit is specified in
Section 4.,2.2).

The approximations of Donnell [4-8] can be applied without introducing sig-

nificant error.

In this handbook, the final equations of Reference 4-7 have been transformed into

equivalent formulations which should be more meaningful to the user. For those cases

where the core shear moduli satisfy the condition

G

f=—2 <1 (4.2-1)
Gyz
the following expression is obtained:
Oy = Keog (4.2-2)



where

2./t t
o0 = ME;2 > = (4.2-3)
R /T-pg? (¢, * t)
and
1
When V< 2 Ke = 1 vy Ve (4.2-4)
1
When V. 2 2 Ko = o5 (4.2-5)
Ve
where
\ 7o (4.2-6)
¢ O%rimp '
h2

%orimp ~ [T )1, 0K (4.2-7)

7 = Plasticity reduction factor, dimensionless.
Ef = Young's modulus of facings, psi.

h = Distance between middie surfaces of facings, inches.,

R = Radius to middle surface of cylindrical sandwich, inches.

t1 and t, = Thicknesses of the facings (There is no preference as to which
facing is denoted by the subscript 1 or 2.), inches.

Ve = Elastic Poisson's ratio of facings, dimensionless.
te = Thickness of core, inches,

Gxz = Core shear modulus associated with the plane perpendicular to
the facings and oriented in the axial direction, psi.

G,,, = Core shear modulus associated with the plane perpendicular to
the axis of revolution, psi.

The relationship between K. and V. can be plotted as shown in Figure 4.2-1, 1tis
important to note that the value Ve = 2.0 establishes a dividing line between two

different types of behavior. The region where V. < 2.0 covers the so-called stiff-core
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Figure 4,2-1, Schematic Representation of Relationship
Between Ko and Ve for § <1

and moderately-stiff-core sandwich constructions. When V. is in the neighborhood of
zero, the core shear stiffness is high and the sandwich exhibits maximum sensitivity to
initial imperfections. Hence, for any given radius-to-thickness ratio, the knock-down
factors applicable to such constructions are of maximum severity. As V. increases
from zero to a value of 2,0, the sensitivity to imperfections becomes progressively
less. The domain where V., > 2.0 is the so-called weak-core region where shear
crimping occurs, Sandwich constructions which fall within this category are not infiu-
enced by the presence of initial imperfections, and a knock-down factor of unity can be
applied to such structures. It should be possible to develop a continuous transitional
knock-down relationship which recognizes the variable influence of the core rigidity but

this is beyond the scope of the present handbook,



4,2.1.2 Empirical Knock-Down Factor

As noted in Section 4,1, the allowable stress intensities for axially compressed, thin-
walled, isotropic (non-sandwich) cylinders are usually computed using the following
equation:

O.r = ¢ %L (4.2-8)

The quantity Y, is referred to as the knock-down factor and this value is generally
recognized to be a function of the radius-to-thickness ratio (R/t). Various investi-
gators have proposed different relationships in this regard, The differences arise out
of the chosen statistical criteria and/or out of the particular test data selected as the
empirical basis. One of the most widely used of the relationships proposed to date is

the lower-bound criterion of Seide, et al. [4-9] which can be expressed as follows:

Yo = 1-0.901(1-e? (4.2-9)
where
_ 1L R .
b= e\t (4.2-10)

This gives a knock-down curve of the general shape depicted in Figure 4.2-2. For the
purposes of this handbook, it is desired that an empirical means of this type also be
provided for the design of sandwich cylinders, One of the major obstacles to the
achievement of this objective is the lack of sufficient sandwich test data for a thorough
empirical determination, Faced with this deficiency, one finds it expedient to employ
the data from isotropic (non-sandwich) cylinders in conjunction with an effective thick-
ness concept and correction factors which are based on the few available sandwich test

points. Toward this end, it is usually assumed that, when V, < 2,0, equal sensitivity



1.0 +

T

~

t

Figure 4,2-2, Semi-Logarithmic Plot of ¥, vs R/t for Isotropic (Non-
Sandwich) Cylinders Under Axial Compression

to imperfections results from equivalence of the shell-wall radii of gyration p
(z% for sandwich constructions whose two facings are of equal thickness). There-
fore, the approach taken here is to rewrite Equations (4.2-9) and (4.2-10) in terms
of P. The revised formulations give the plot shown as a dashed curve in Figure
4,2-2, Also shown in this figure are the appropriate test points obtained from
axially compressed sandwich cylinders [4-2, 4-10, 4-28] which did not fall into
the weak-core category. Eleven such data points are shown. In addition, two
test points are shown for axially compressed conical sandwich constructions
[4-10] which likewise did not lie in the weak-core region. The conical data are
included in Figure 4.2-3 in view of the scarcity of available test results and
also because the cones were analyzed as equivalent cylinders whose radii were
taken equal to the Ry (finite principal radius of curvature) values at the small end
of the specimens. Based on this limited amount of sandwich test data, it is recom-

mended that the solid curve of Figure 4.2-3 be used for design purposes. This
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Figure 4,2-3. Knock-Down Factor ), for Circular Sandwich
Cylinders Subjected to Axial Compression
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gives Y. values that are 75 percent of those obtained from the dashed curve which was

based on the empirical formula of Seide, et al, [4-9].

In addition to the test results described above, a considerable number of test points
are available from cylindrical sandwich constructions which fall into the weak-core
classification. As noted in Section 4.2,1.1, the methods recommended in this hand-
book are such that, in the weak-core region, no empirical reduction will be applied
to the theoretical results of Reference 4-7. In order to explore the validity of this
approach, plots are furnished in Figures 4, 2-4 and 4.2-5 which compare the weak-
core test results of References 4-2 and 4-11 against predictions from the recom-
mended design criterion, It can be seen that all but one of the test results exceed
the predicted strengths, and that the single exception failed at 86 percent of the pre-
dicted value. In many of the cases where (o'chest/o'Predicted) > 1.0, although the
discrepancies measured in units of psi were not very great, the percentage differ-
ences were quite large, This behavior can be explained by the fact that the theoreti-
cal basis [4-7] proposed in this handbook assumes that bending of the facings about
their own middle surfaces can be neglected. As shown in Reference 4-12, this
assumption can be very conservative in the weak-core region, However, in the
interest of simplicity, the methods of this handbook retain this assumption especially
since it is a conservative practice and most practical sandwich constructions will not

be designed as weak-core structures.

In view of the meager compressive test data available from stiff-core and moderately -
stiff-core sandwich cylinders, the method proposed here is not very reliable when
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Ve < 2.0, Therefore, in such cases the method can only be considered as a '"best-

available" approach. On the other hand, where the failure is by shear crimping

(Ve 22.0), the method is quite reliable and will, in fact, usually give conservative

predictions.

Test Ogp, ksi

20

15

10

. °
te, <
<
* e bd
° &
L ] Py 8\0
LA &
° z
&
[ ¢ X o<
[} )
&@

Test Data from Reference 4-2

10 15
Predicted o, ksi

20

(Neglecting bending stiffness of individual facings)

Figure 4.2-4. Comparison of Proposed Design Criterion Against Test Data for Weak-

Core Circular Sandwich Cylinders Subjected to Axial Compression
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Figure 4,2-5, Comparison of Proposed Design Criterion Against
a Test Result for a Weak-Core Circular Sandwich
Cylinder Subjected to Axial Compression

4,2,1,2.1 Interpretation of Test Data

As indicated in the preceding paragraphs, appropriate test data must be used in order
to arrive at practical values for the knock-down factor, However, one can be easily
misled in this endeavor when the test data and/or the classical theoretical predictions
lie in the inelastic region. To demonstrate this point as simply as possible, the pre-
sent discussion is limited to the case of axially compressed circular sandwich cylin-
ders for which V., = 0, Then the recommended design value for the critical stress

can be expressed as follows:

h 2 Jt to

= Y, MEf =
%r = %"t R T 4t ta)

(4.2-11)
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For any particular test specimen, the related value for the knock-down factor should be

computed from the following expression which is obtained by a simple transposition of

a0,
chest
Vo) ~ " Test
C'Test ~
[E h 2yt t;

fR V1-0g® (t + ta)

Equation (4,2-11):

(4.2-12)

The plasticity reduction factor Nrest is evaluated at the actual experimental buckling
stress, By inspection of the numerator and denominator of Equation (4.2-12), one can

conclude that this formula may be rewritten in the following more meaningful form:

Experimental critical stress value
which would have been attained had
~L__the material remained elastic
Test Classical theoretical critical
stress value assuming the
behavior to be elastic

(Ye) 4.2-13)

The example illustrated in Figure 4.2-6 should help to clarify this concept. In this
figure, the solid line represents the stress-strain curve for the test specimen mate-
rial, Suppose that this particular specimen buckled at a stress equal to Terrest *
indicated in the figure, it is assumed here that this stress lies in the inelastic region
so that Moo will be less than unity. For the purposes of this discussion, further
assume that Mpoq = 0. 80, If the material had remained elastic, the experimental
critical stress would have been somewhat higher than Ocrrest © This greater value

. [ N
will be denoted as Ocrrest © Then it follows that

o; -
JCrrest _CTTest (4.2-14)

!
- = = = 1,25 @
TeTrest  Mpost 0.80 1 CTTest
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Figure 4,2-6. Stresses Involved in Interpretation of Test Data

Now let it also be assumed that, using elastic material properties, the classical theo-
retical critical stress equals the value 9 indicated in Figure 4,2-6, The following

formula would then give the proper value for the experimental knock-down factor:

’
.2
TCTpegy 1425 Torqeg

(Ye) = 4.2-15)
Test ocy, ocL
where
- g B 2vhte 4.2-16
%L MR V-4 t, + to) ¢.2-16)
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The above discussion is given here since some of the results presented in the literature
can be quite misleading, That is, comparisons are often shown between the actual test
value OCTrest (without regard as to whether elastic or not) and the inelastic classical
theoretical prediction, For the case shown in Figure 4,2-6, the latter value cannot
exceed T rax and this type of comparison might lead one to believe that the appropriate
knock-down factor is very close to unity. However, use of the correct approach as
expressed by Equations (4,2-13) and (4.2-15) gives a much lower ¥, value, For any
given geometry, one could always show very close agreement between Gchest and
Tpax simply by choosing a material with a sufficiently low yield strength and having

a flat post-yield stress-strain curve.
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4,2.2 Design Equations and Curves

For simply supported circular sandwich cylinders subjected to axial compression, the
critical stresses may be computed from the relationships given on page 4-18 where the
subscripts 1 and 2 refer to the separate facings, There is no preference as to which
facing is denoted by either subscript, These equations were obtained by a simple ex-
tension of the formulas developed in Reference 4-7 which only considered the case
where the behavior is elastic and the moduli of elasticity are identical for both facings.
The extended versions given in this handbook were derived through the use of equivalent-
thickness concepts based on the ratios of the moduli of the two facings. For cases
where the two facings are not made of the same material, these equations are valid
only when the behavior is elastic (1 = 1). Application to inelastic cases (1 = 1) can
only he made when both facings are made of the same material, For such configura-

tions, E; and E; will, of course, be equal.

The buckling coefficients K, can be obtained from Figure 4.2-7. Curves are given
Gxz .
there for both § €1 and # =5 where # = —— ., Since these two plots are not very
yz

different from each other, one may use Figure 4,2-7 to obtain rather accurate esti-

mates of Ko when 1< @ <5.

Whenever V, < 2,0, the knock-down factor ¥, can be obtained from Figure 4.2-8,

When Vg 2 2.0, use ), = 1.0,

For elastic cases, use 7 = 1, Whenever the behavior is inelastic, the methods of

Section 9 must be employed.
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Design Knock-Down Factor for Circular Sandwich

Cylinders Subjected to Axial Compression

Figure 4.2-8.
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The critical axial load (in units of pounds) can be computed as follows:
PCI‘ = 2mR [Ucrl tl + O-CI‘Q tg] (4.2—26)

In the special case where t; = t; = ty and both facings are made of the same material,

Equations (4,2-17) through (4.2-26) can be simplified to the following:

%r = Ye K¢ % (4.2-27)
_(MEf) n (4.2-28)
o 1-y¢ R
ha
Terimp ~ 3y, O (4.2-29)
a,
Vo= —2 4.2-30)
9erimp
P, = 47Rt; o,y (4.2-31)

Equations (4.2-17) through (4.2-31) and Figure 4.2-7 are valid only when the length L

of the cylinder is greater than the length of a single axial half-wave in the buckle pat-

G
tern for the corresponding infinite-length cylinder. For the case where 8 = G_;: =1,

one can apply the following test to determine if the cylinder length is sufficiently large:

When V. <« 2 When V_, > 2
C Cy

Equations (4.2-17) through (4.2-31) Equations (4.2-17) through (4.2-31)

and Figure 4.2-7 are valid only where and Figure 4.2-7 are valid for any

(i‘)z 1.57 [CO (2-vcl)]é

value of L.
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For constructions where 9 = 1, no corresponding numerical criterion is presently
available. In such cases, one can only use the above test in conjunction with engineer-
ing judgement. It is helpful to point out, however, that most practical sandwich cylin-
ders for aerospace applications will be sufficiently long for Equations (4.2-17) through
(4.2-31) and Figure 4.2-7 to be valid. In addition, it is comforting to note that the

use of these relationships for shorter cylinders results in conservatism.

Cylinders which fail to meet the foregoing length requirement are usually referred to
as short cylinders. The only means available for the analysis of such sandwich cylin-

ders under axial compression is the solution of Stein and Mayers [4-13] which is only

valid
a. when 6 =1
and
b. when both ends of the cylinder are simply supported
and
c. when both facings are made of the same material
and
d. the thickness of one facing is not more than twice the thickness of the
other facing.

For short sandwich cylinders which satisfy these conditions, one can use the design

curves of Figure 4.2-9 which involves the following parameters:

) 2
z - 2 iy ? (4.2-32)

Rh
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r, = (4.2-33)
a L2 Dq
¢ U'cr (tl + tQ) LE
Ke = ——):1;'2])— (4.2-34)
where
(E; t1)(Ez to) h°
D = 4,2-35
T0e) [(Ba ) + (B @] (.2-39)
h2
Dy = o Gxz (4.2-36)
and

L = Over-all length of cylinder, inches.

During the preparation of this handbook, no solutions were uncovered for axially com-
pressed sandwich cylinders having any degree of rotational restraint at the boundaries.
However, in most practical aerospace applications, the cylinders will be sufficiently

long for such fixity to have negligible effects on the buckling loads.
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4.3 PURE BENDING

4.3.1 Basic Principles

4,3.1.1 Theoretical Considerations

Based on small-deflection theory, investigations were made in References 4-14, 4-15,
and 4-16 of elastic instabjlity in thin-walled, isotropic (non-sandwich) cylinders sub-
jected to axial compressive stresses which vary in the circumferential direction. From
the results of these references, it can be concluded that, regardless of the nature of
the circumferential stress distribution, classical instability is reached when the peak

axial compressive stress satisfies the condition

o X6 4.3-1)

It should be recalled that the value ,6 Et/R is also obtained from the small-deflection
solution for thin-walled, isotropic (non-sandwich) cylinders subjected to uniform axial
compression. In view of this result, one might reasonably expect that small-deflection
sandwich theory would also indicate that only the peak axial compressive stress need

be considered in cases of pure bending or combined bending and axial compression., It
has been shown in References 4-17, 4-18, and 4-19 that this is indeed the case. Ref-
erences 4-17 and 4-18 demonstrate this for weak-core sandwich cylinders while Ref-
erence 4-19 deals with infinitely long cylinders which fall in the stiff-core and moder-
ately-stiff-core categories, Therefore, for the purposes of this handbook, it is assumed
that the theoretical considerations of Section 4,2 (axial compression) apply equally well
to sandwich cylinders which are subjected to pure bending if the analysis considers only

the peak value of the applied compressive stress, The only differences lie in the em-

pirical knock-down factors recommended for the two cases.
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4,3.1.2 Empirical Knock-Down Factor

In the case of pure bending, only a relatively small portion of the cylinder's circumfer-
ence experiences stress levels which initiate the buckling process, Because of the
consequent reduced probabiiity for peak stresses to coincide with the location of an
imperfection, it is to be expected that the knock-down factors for pure bending will not
be as severe as the corresponding factors for axial load. For thin-walled, isotropic
(non-sandwich) cylinders under pure bending, Seide, et al, [4—9] have proposed the

following lower-bound relationships:

Y, = 1-0.731 (1 - e~ ®) (4.3-2)

where

R

1
b = T " 4.3-3)

Comparison against Equations (4,2-9) and (4.2-10) shows that this bending criterion
does indeed give Yy, values of lesser severity than those which apply to the axially
compressed cylinders, Following the same approach as that taken in Section 4.2, the
above equations are rewritten in terms of the shell-wall radius of gyration p(z% for
sandwich constructions whose two facings are of equal thickness), The revised formu-
lations then give the plot shown as a dashed curve in Figure 4.3-1. Also shown in this
figure are the appropriate test points from stiff-core sandwich cylinders subjected to
pure bending [4—20]. Since only three such data points are available, it was thought to
be helpful to include the axial compression sandwich data points previously shown in
Figure 4.2-3. To fully understand the information given in Figure 4,3-1, it is im-

portant for the reader to be aware of the data reduction techniques used here. For an
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explanation of the procedures used in this handbook, reference should be made to the

related discussion in Section 4.2.1.2.1.

Based on the limited amount of available test data, it is recommended here that the
solid curve shown in Figure 4. 3-1 be used for the design of sandwich cylinders sub-
jected to pure bending. This gives Y}, values that are 75 percent of those obtained
from the dashed curve which is based on the empirical formula of Seide, et al, [4-9].
This is consistent with the practice followed in Section 4.2 for the case of axial com-
pression where the design knock-down factor was likewise taken to be 75 percent of

the value obtained from the corresponding curve derived from Reference 4-9.

In view of the meager test data available from sandwich cylinders under pure bending,
the method proposed in Section 4.3.2 is not very reliable when Ve < 2,0, Therefore,
in such cases, the method can only be regarded as a "best-available" approach, On

the other hand, when the failure is by shear crimping (Vo 2 2.0), the method is quite

reliable and will, in fact, usually give conservative predictions.
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4,3.2 Design Equations and Curves

For simply supported sandwich cylinders subjected to pure bending, one may use the
same design equations and curves as are given in Section 4.2,2 (for axial compression)
except for the following:

a. For the case of pure bending, use Figure 4, 3,2 to obtain the knock-down

factor Y, whenever V. < 2.0 (When Vg 22,0, use ¥, = 1,0),

b. For the case of pure bending, the critical stresses obtained from the
equations and curves of Section 4,2.2 correspond to the circumferential
location which lies on the compressive side of the neutral axis and is
furthest removed from that axis. Hence the computed stresses are the
peak values within the variable circumferential distribution. Therefore,
when the behavior is elastic, the critical bending moment Mg, can be

computed from the following:

Mcr = ‘n'}{2 [O-CI’]_ t1 + (Tcrz tg] (4.3—4)

2
I
H

|

= Critical bending moment, in, ~1bs,

=
i

Radius to middle surface of sandwich cylinder, inches,

a ando&

er, Critical compressive stresses in facings 1 and 2, respec-

Tz
tively, which result in general instability of the cylinder, psi.

t and t; = Thicknesses of the facings 1 and 2, respectively, inches,

Note: There is no preference as to which facing is denoted by the

subscripts 1 and 2,
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To compute Mcp when the behavior is inelastic, one must resort to numerical integra-

tion techniques,

Since the procedure recommended here makes use of the methods of Section 4. 2. 2, all
of the limitations of that section are equally applicable to the present case, That is,
only simply supported boundaries are considered and the primary solution is excess-
ively conservative for the so-called short-cylinder constructions. In addition, only
very limited means are available to facilitate a quantitative assessment of whether or
not a particular construction falls within the short-cylinder classification, Further-
more, the computation of critical stresses for short-cylinder constructions can only

be accomplished for rather special cases as cited in Section 4. 2.2,

As noted in Section 4,2.2, during the preparation of this handbook, no solutions were
uncovered for axially compressed sandwich cylinders having any degree of rotational
restraint at the boundaries. However, it was also noted that, in most practical aero-
space applications, the cylinders will be sufficiently long for such fixity to have negli-
gible effects on the critical stresses, The same situation exists for the case of pure

bending.
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4.4 EXTERNAL LATERAL PRESSURE

4,4.1 Basic Principles

4.4.1.1 Theoretical Considerations

This section deals with the loading condition depicted in Figure 4.4-1. Note thal the

sandwich cylinder is subjected to external pressure only over the cylindrical surface.
No axial loading is applied. In addition, it is specified that the ends are simply sup-
ported. That is, during buckling, both ends of the cylinder experience no radial dis-

placements and no bending moments.

p,psi

Both ends
simply supported

p, psi

Figure 4.4-1. Circular Sandwich Cylinder Subjected to
External Lateral Pressure

The theoretical basis used here is the classical small-deflection solution of Kuenzi,

et al. [4-21] which includes the following assumptions:

a. The facings are isotropic.

b. The facings may be of equal or unequal thicknesses.

C. The facings may be of the same or differeni materials.

d. Poisson's ratio is the same for both facings.

e. Bending of the facings about their own middle surfaces can be neglected.

f. The core has infinite extensional stiffness in the direction normal to the
facings.

g. The core extensional and shear rigidities are negligible in directions

parallel to the facings.
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h. The transverse shear properties of the core may be either isotropic or

orthotropic.
. . .. 2R ) e
i. The inequality 3 >1is satisfied.
i. Several additional order-of-magnitude assumptions are valid, as noted

below in connection with Equation (4.4-2).

The solution of Kuenzi, et al. [4—21] draws upon the earlier groundwork laid by
Raville in References 4-22, 4-23, and 4-24. Norris and Zahn used these reports to
develop design curves which are published in References 4-25 and 4-26. The work of
Kuenzi, et al. [4-21] constitutes the latest revision to this series of reports and is
the most up-to-date treatment of the subject. However, the format of their results
has been slightly modified in Reference 4-5 in order to reduce the scope of interpola-
tion required in practical applications. The revised format is used here. However,
the need for interpolation has not been entirely eliminated since separate families are

still required for each of the selected values for Vp [see Equation (4. 4—4)].

The final theoretical relationships used in this handbook are as follows:

—_— C -
Per = R (1-ve) [(Ert;) + (Ezte)] (4.4-1)
where
Cp = Minimum value (with respect to n) of Ky, dimensionless.
and

(4.4-2)
vy (4 %)[(%’ 3l 1f’“’1?z) 1] ) v

AR SRR (R

4-33



(E1ty) (Ezte) h°

SE L l (4.4-3)
[(Eity) + (Eztz)]° R
Vp =1 Cily) Bete)h (4.4-4)
HE: ty) +(Ezta)] (1-vg°) R@ Gyz
where
Per = Critical value of external lateral pressure, psi.
R = Radius to middle surface of cylindrical sandwich, inches.
Ve = Elastic Poisson's ratio of facings, dimensionless.
T = Plasticity reduction factor, dimensionless.
E, and Ez = Young's moduli of facings 1 and 2, respectively, psi.
t; and tz = Thicknesses of facings 1 and 2, respectively, inches,
n = Number of circumferential full-waves in the buckle pattern,
dimensionless,
L = Over-all length of cylinder, inches.
h = Distance between middle surfaces of facings, inches.
Gyz = Core shear modulus associated with the plane perpendicular

to the axis of revolution, psi.
Note: There is no preference as to which fac ing is denoted by the
subscript 1 or 2.
For cases where the two facings are not made of the same material, the foregoing
formulas are valid only when the behavior is elastic (T =1). Application to inelastic
cases (T =1) can only be made when both facings are made of the same material,

For such configurations, E; and E; will, of course, be equal.
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Equation (4.4-2) constitutes an approximate expression for Kp since it embodies the

assumpticns cited earlier in this section in addition to the following:

K, h?®
a. Terms containing K; and 4 R2 Wwere neglected.
b. It was assumed that (1 £+ m Ellﬁ) = 1, where m is a small whole number,

By using Equation (4.4-2), plots can be generated of the form shown in Figure 4.4-2,
The design curves of this handbook are of this type and were taken directly from Ref-
erence 4-5. It is helpful to note here that lower and upper limits exist for the coeffi-
cient C,, and these are identified in Figure 4.4-2. The lower limit is associated with
long-cylinder behavior. Such configurations are unaffected by the end constraints and
the related critical pressures are equal to those for rings which are subjected to
external pressure. For portions of the cylinders that do not lie in the neighborhoods

of the boundaries, the buckle patterns will be the same as are obtained from such rings.
In this connection, it should be noted that application of the Donnell approximations
[4-8] to non-sandwich rings leads to critical pressures which are 33 percent higher
than the predictions from accurate ring formulations. This is due to the fact that the
related number of circumferential full-waves (n = 2) is not sufficiently high to justify
Donnell's [4-8] assumptions. It is important to observe that the theory of Reference
4-21 retains a sufficient number of terms to accurately predict the buckling of long
cylinders. That is, when Gyz =~ 00 (Vp =~ 0) and L/R is large, the critical pressure
is equal to the value obtained from that ring theory which is capable of properly de-
scribing the behavior where n = 2. The upper limit to the curve of Figure 4.4-2 is

associated with the shear crimping mode of failure which involves extremely short
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circumferential wavelengths (n—o0). Specialization of Equations (4.4-1) through
(4.4-4) to this case gives the following formula for the critical compressive running

load N, measured in units of lbs/inch:

Ner = h Gy, (4.4-5)

where
Ner = Per R (4.4-6)
By using the approximation h = t;, it can easily be shown that Equation (4.4-5) is

equivalent to the crimping formula presented earlier as Equation (2.3-9).

Upper Limit (Shear Crimping)

Lower Limit
Note: Vp = Constant (n = 2)

2

Y< = Constant

(%)

Figure 4.4-2. Schematic Representation of Log-Log Plot of C,

Versus L/R for Circular Sandwich Cylinders
Subjected to External Lateral Pressure

Another important point which should be noted is that the approximate formula for Kp
[Equation (4.4-2)] does not contain the core shear modulus associated with the plane
perpendicular to the facings and oriented in the axial direction (Gxz). This modulus

has very little influence on cylinders longer than approximately one diameter and has
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therefore disappeared through the approximations made in the development of Refer-
ence 4-21. Thus the theory and design curves presented in this section (Section 4. 4)
of the handbook can be considered applicable to sandwich cylinders having cores with

either isotropic or orthotropic transverse shear moduli.
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4.4.1.2 Empirical Knock-Down Factor

In Section 4.1 it is pointed out that, for circular cylinders subjected to external
lateral pressure, the shape ol the post-buckling equilibrium path is such that one
would not expect strong sensitivity to the presence of initial imperfections. This has
indeed been shown to be the case for isotropic (non-sandwich) cylinders where the
available test data show rather good agreement with the predictions from classical
small -deflection theory. In view of this, it has become widespread practice to either
accept uncorrected small-deflection theoretical results as design values or to apply a
uniform knock-down factor Yp of 0.90 regardless of the radius-to-thickness ratio.
In Reference 4-4 the latter practice is also recommended for sandwich cylinders and

this approach has likewise been selected as the criterion for this handbook.

The only available test data for sandwich cylinders subjected to external lateral pres-
sure are those given in References 4-27 and 4-28. In the [irst of these documents,
Kazimi reports the results from two specimens which were identical except for the use
of normal-expanded core in one cylinder while the other incorporated over-expanded

core. The following results were obtained:

Comparison of Theoretical Predictions Versus
Test Results of Kazimi [4-27]

Theoretical p,p (Yp)Test
Core Type Test per Based on Ref, _ (Test pcr)
(psi) 4-5 and v, 1.0 (Theo. per)
(psi) = -
Normal-Expanded 17 30.5 . 56
Over- Expanded 27 30.5 . 88
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Kazimi [4-27] attributes the scatter in his test results to the circumstance whereby
the over-expanded condition gives more uniform core properties than are obtained
from normal-expanded honeycomb. The argument put forth on behalf of this viewpoint
rests on the fact that the over-expanded core exhibits less anticlastic (saddle-type)

deformation in forming the core to the shape of the cylinder,

In Reference 4-28 Jenkinson and Kuenzi report the results obtained from five test
cylinders of nominally identical construction. These cylinders all had glass-reinforced
plastic facings. Each facing was composed of three layers of glass fabric with their
individual orientations controlled to provide a laminate having in-plane properties
which were essentially isotropic. The following results were obtained from these
cylinders:

Comparison of Theoretical Predictions Versus
Test Results of Reference 4-28

@ ® ® @
Theoretical pgp (yp)Test
Cylinder Test per Based on Ref. _ (Test pcr)
No. (psi) 4-5 and yp = 1.0 ~ (Theo. pey)
(psi) = +

1 60 55.2 1.09

2 52.5 45,2 1.16

3 52.5 52.6 1.00

4 52.5 45,2 1.16

5 52.5 47.6 1.10

For specimens 2 through 5 it was reported that initial buckling occurred at external

lateral pressures which ranged from 50 to 55 psi, Therefore, in the above tabulation
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it was assumed that each of these four cylinders buckled at 52.5 psi. In general, the

test values are somewhat higher than the theoretical predictions. This is probably

due to
a. the absence of precise data on the material properties
b. inaccuracies due to interpolation between the theoretical curves
and
c. the fact that the facings were relatively thick in comparison with the

tf
sandwich thickness (E o~ .25).

The foregoing test results from References 4-27 and 4-28§ seem to provide added
justification for the use of vy, = 0.90 as a lower-bound knock-down factor. However,
it would certainly be desirable to supplement these data with additional tests on speci-
mens having small tf/h ratios which would be truly representative of configurations

usually found in realistic full-size sandwich cylinders.

An additional point of interest concerning the use of a uniform value of Yp = 0.90 is
the fact that shear crimping failures will be insensitive to the presence of initial im-
perfections. Hence, in the region where this mode of failure prevails, one could

safely use the value Yp = 1.0, especially since the theoretical basis used here neglects
the bending stiffnesses of the facings about their own middle surfaces. However, in-
spection of the design curves of Section 4.4.2 shows that this type of failure will only
occur for extremely low L/R values. This fact, coupled with considerations of
simplicity and the moderate nature of the value Yp = 0,90, led to the selection here

of a uniform knock-down factor.



In view of the meager test data available from sandwich cylinders subjected to external
lateral pressure, the method recommended here can presently be regarded as only a
"best-available' approach. However, there appears to be little reason to doubt that

further testing would show these procedures to be quite reliable.
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4.4.2 Design Equations and Curves
For simply supported circular sandwich cylinders subjected to external lateral pres-

sure, the critical pressure may be computed from the equation

v, T C
P p -
Per ~© R(I-%%) [(Eity) + (Eztz)] (4.4-7)
where
'\(p = 0.90

and C is obtained from Figures 4,4-3 through 4.4-5. Inorder to use these curves,

one must compute the {ollowing values:

(E1t1)(Ez ta) I°

4o = 4,4-8
Y T [(Exty) +(E2ta))® R ( )
v o1 (E1ti)(E2ta)h 440
P™ U [(Exty) + (Egta)] (1-vg ) K Gyz (#-4°9)

For elastic cases, use T = 1. Whenever the behavior is inelastic, the methods of

Section 9 must be employed.

For cases where the two facings are not made of the same material, the foregoing
formulas are valid only when the behavior is elastic (7 = 1). Application to inelastic
cases (T =1) can only be made when both facings are made of the same material.

For such configurations, E; and Ez will, of course, be equal.

Since separate families of design curves (Cp vs L/R) are provided for only three
values of Vp, one will usually find it necessary to use graphical interpolation or

extrapolation to establish Cp for the configuration of interest. Where desired,
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improved accuracy can be obtained by minimizing Equation (4.4-2) with respect to n

in order to obtain Cp.

The results given by the procedures specified here apply to sandwich cylinders having

cores with either isotropic or orthotropic transverse shear moduli.
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4.5 TORSION

4.5.1 Basic Principles

4.5.1.1 Theoretical Considerations

This section deals with the loading condition depicted in Figure 4.5-1. Note that the
only consideration given to boundary conditions is that, during buckling, it is assumed
that no radial displacements occur at either end. Further conditions at these boundar-
ies are completely disregarded. This approach should be sufficiently accurate for all

simply supported cylinders except those which are very short.

T, In.~Lbs. Torque

——0)

It is assumed that, during buckling,
no radial displacements occur at
either end.

Figure 4,5-1. Circular Sandwich Cylinder Subjected to Torsion

The buckling of isotropic (non-sandwich), circular cylinders subjected to torsion was
treated by Donnell in Reference 4-8 which has become a standard source of information
concerning reasonable approximations which can be employed in practical thin-shell
theory. Using the Donnell approximations, Gerard [4-29] has investigated the buck-
ling of long circular sandwich cylinders subjected to torsion. This solution gives no

consideration whatsoever to the boundary conditions. Such an approach is valid in
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view of the assumed extremely long configuration. On the other hand, in Reference
4-30, March and Kuenzi develop small-deflection solutions for sandwich cylinders of
both finite and infinite lengths. The boundary conditions taken tor the finite-length
cylinders are as indicated in Figure 4.5-1. For the purposes of this handbook, Refer-
ence 4-30 is considered to provide the most up-to-date treatment of the subject. The
theoretical design curves given in Section 4. 5.2 were taken directly from that report
and embody the following assumptions:

a. The facings are isotropic.

b. The facings are of equal thickness. However, the curves are reasonably
accurate for sandwich cylinders having unequal facings, provided that the

thickness of one facing is not more than twice the other.
C. Young's modulus is the same for both facings.
d. Poisson's ratio is the same for both facings.

e. The core has infinite extensional stiffness in the direction normal to the

facings.

f. The core extensional and shearing stiffnesses are negligible in directions

parallel to the facings.

g. The transverse shear properties of the core may be either isotropic or
orthotropic.
h. The approximations of Donnell [4-8] can be applied.

The design curves include separate families which respectively neglect and include
bending of the facings about their own middle surfaces. However, for both of these

situations, it is assumed that the facings are thin.



The theoretical buckling relationship used here is
d -
Ter = Kg T Ey R (4.5-1)

which is based on the further assumption that both facings are made of the same mate-

rial. The notation used here is as follows:

To.r = Critical value of facing shear stiress, psi.
Kg = Torsional buckling coefficient, dimensionless.
T = Plasticity reduction factor, dimensionless.
Ef = Young's modulus of facings, psi.
d = Total thickness of sandwich wall.
d = tC +t; + to (4.5-2)
t, = Thickness of core, inches.
t, and tz = Thicknesses of the facings (There is no preference as to which facing

is denoted by the subscript 1 or 2.), inches.

R = Radius to middle surface of sandwich cylinder, inches.

The buckling coefficient Ky is arrived at by the minimization of a complicated ex-
pression given in Reference 4-30. This formulation is not reproduced here. However,
it should be noted that the indicated minimization leads to Kg values which can be
plotted in the general form shown in Figure 4. 5-2 where

2
L
ZS = —E (4.5—3)

Q.

16t t1te N Eg
S 15(ty +tz) Rd Gy,

\% (4.5-4)
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g . —2Z (4. 5-5)
GyZ
and
L = Over-all length of cylinder, inches.
G,, = Core shear modulus associated with the plane perpendicular to the
facings and oriented in the axial direction, psi.
Gyz = Core shear modulus associated with the plane perpendicular to the
axis of revolution, psi.
n - Number of circumferential full-waves in the buckle pattern,
dimensionless.
Upper Limit (Shear Crimping)
t,/d - Constant
U - Constant
K V4 = Constant
Long Cylinder
(n = 2)
Zg

Figure 4.5-2. Typical Log-Log Plot of the Buckling Coefficient K¢

for Circular Sandwich Cylinders Subjected to Torsion

The curves given in Section 4.5.2 are of this type. Note that the upper limit for the
buckling coefficient Kg corresponds to the shear crimping mode of failure which
involves extremely short circumferential wave-lengths (n -~ ), Specialization of
the buckling equations to this case leads to the following result when it is assumed

that t./d ~ 1 :



h® .
Ter = Torimp = ) Tt L /Gxz Gyz (4.5-6)

where

h = Distance between middle surfaces of facings, inches.

In connection with sandwich constructions having large values for the parameter Zg
(long cylinders), it is pointed out that the cylinder will buckle into an oval shape (n = 2)
for which the Donnell approximations [4-8] are no longer valid. To illustrate this
point, attention is drawn to the results obtained for isotropic (non-sandwich), circular
cylinders subjected to torsion. By using the Donnell approximations, Gerard [4-31]

obtains the following result for the critical shear stress of such cylinders:

3
__0.272 (t) /2 (4.5-)

cr (1_\)e2)3/4 E

In Reference 4-32, Timoshenko presents the following result from a more rigorous

solution which does not invoke the Donnell approximations:

= _i_('t—> e 4.5-8
o " T h s AR (4.5-8)

The more exact result gives a critical stress which is only 87 percent of that given by
the Donnell approach. This is similar to the situation encountered in the case of exter-
nal lateral pressure (see Section 4.4) where the difference is even more pronounced.
Since the torsional design curves of Section 4. 5.2 incorporate the Donnell approxima-

tions, they must be used with caution in the case of long cylinders (n = 2),



4,5.1.2 Empirical Knock-Down Factor

In Section 4.1 it is pointed out that, for circular cylinders subjected to torsion, the
shape of the post-buckling cquilibrium path is such that one would not expect the scensi-
tivity to initial imperfections to be as strong as that encountered in the case of axial
compression. On the other hand, the sensitivity in torsion would he expected to be
somewhat more severe than is exhibited by circular cylinders under external lateral
pressure. In the case ol isotropic (non-sandwich), circular cylinders loaded in torsion
Reference 4-3 indicates that, over an enormous range ol sizes, proportions, and
materials, a lower-bound curve to the available test data can be obtained by taking

60 percent ol the values obtained {rom classical small-detlection theory (vg -~ 0.60).
Average values of the test data can be approximated by using %0 percent of the classi-

cal theoretical predictions(yg = 0.80}.

To date, no test data has been published for sandwich c¢ylinders which are ol the types
considered in this handbook and are subjected to torsion. Therefore, no empirical
basis exists for the determination of reliable knock—down tactors in such cases.

Based on the moderate drop-off of the post-buckling equilibrium path, some sources
[4-5] recommend that no reduction be employed (vg = 1.0). However, Reference 4-4
takes a more cautious approach in recommending the usc of yg - .80 for the sand-
wich configuration. This selection was made largely on the basis of the isotropic
(non-sandwich) data. Although this value did not furnish a lower-bound to the isotropic
test points, it is reasonable to expect that the usually greater thicknesses of sandwich

cylinders should lead to more moderate reductions than apply to the isotropic (non-
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sandwich) configurations. In addition, it should be noted that cylinders under torsion
will continue to support considerable torque well into the postbuckled region. Hence
the torsional buckling mechanism should not be nearly so catastropic as the general
instability of axially compressed cylinders. With these several factors in mind, the
value yg = 0.80 has been selected for use in this handbook. In view of the lack of
sandwich test data to substantiate this selection, the methods proposed here can only

be regarded as a "best-available" approach.



4.5.2 Design Equations and Curves

For simply supported circular sandwich cylinders subjected to torsion, the critical

shear stress may be computed from the equation

d
Ter = ¥s Kg T Ef g
where

Yg = 0.80

d:tc+t1 + ta

and Kg is obtained from Figures 4.5-3 through 4.5-8.

one must first compute each of the following values:

.
§ dR

, 16 tctl tz TEf
Vg =

GXZ

= Gyz

C 15 (t, ~tz) Rd Gyy

(4.5-9)

(4.5-10)

(4.5-11)

In order to use these curves,

(4.5-12)

(4.5-13)

(4.5-14)

It is required here that both facings be made of the same material.

For elastic cases, use T = 1. Whenever the behavior is inelastic, the methods of

Section 9 must be employed.

The critical torque T,y , measured in units of in.-lbs, can be computed from the

following for both elastic and inelastic cases:

TCI‘
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Curves for Kg are given for values of 6 = 0.4; 1.0; and 2.5. Estimates of Kg

for other values of 6 can be obtained by interpolation.

In addition, curves for Kg are given for values of t, /d = 1,0 and 0.7. The former
neglect the contribution from bending of the facings about their own middle surfaces.
The latter may be used to obtain numerical estimates of the conservatism introduced

by neglecting these stiifnesses.

As noted in Section 4.5.1.1, the design curves are somewhat inaccurate in the region
where Zg is large (long cylinders). Some caution should be exercised in the appli-

cation of the curves in this region.

Strictly speaking, Figures 4.5-3 through 4.5-8 apply only when the facings are equal.
However, the curves are reasonably accurate for sandwich cylinders having unequal

facings, provided that the thickness of one facing is not more than twice the other.
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4.6 TRANSVERSE SHEAR
4.6.1 Basic Principles

In Reference 4-33, Lundquist reports the results from a series of tests on isotropic
(non-sandwich), circular cylinders subjected to combincd transverse shear and bend-
ing. The same type of data is published in Reference 4-34 for elliptical cylinders.

Both scts of data were obtained from cantilevered cylinders of varied lengths. Extrapo-
lation of these results to the condition of zero bending stress permits a determination

of critical stresses for pure transversce shear Joading. It has proven useful to com-
pare these stress valucs against the theoretical results obtained from small-deflection
theory for isotropic (non-sandwich), circular cylinders loaded in torsion. Gerard and
Becker [4-35] report that, for nominally identical specimens, such comparisons yicld
the following ratios where the theoretical predictions are obtained by using Reference
4-36:

PAverage of 7o+ Test Values for
| Transverse Shear Loading ]

o J 1.6 6o
Small-Deflection Theoretical T G (4.6-1)
Values for Torsional Loading

Lower-Bound Tor Test Values for ]
L Transverse Shear Loading i
Small-Deflection Theorctical Ter 7
| Values for Torsional Loading

= 1.25 (4.6-2)

To properly interpret these ratios, it is pointed out that, for torsional loading, the
shear stress 7,,. is uniformly distributed around the circumfcrence. On the other
hand, under transverse shcar loading, the shear stress is non-uniform and the value

Ter then corresponds to the peak intensity which occurs at the neutral axis.
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For the lack of a better approach, it is recommended that Equation (4. 6-2) be used for
the design and analysis of circular sandwich cylinders that are subjected to transverse
shear forces. In such cases, the required small-deflection theoretical Ter values for
torsional loading should be obtained as specified in Scetion 4.5 of this handbook with
the exception that y = 1.0 should be used here. No test data are available to sub-
stantiate the reliability of this practice. Until such data do become available, onc can

only regard this procedure as a "best-available' approach,
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4.6.2 Design Equations and Curves
For simply supported circular sandwich cylinders subjected to a transverse shear
force and having both facings made of the same material, the critical shear stress
may he computed from the equation

= 1.25K nE d 4.6-3)

Ter = TP TELR (.

where the buckling coefficient Ks is obtained from Figures 4.5-3 through 4.5-8 and
the notation is the same as that employed throughout Section 4.5, As noted in Section

4.5.1.1, these figurcs are somewhat inaccurate in the region where ZS is large (long

cylinders) and onc should exercise some caution when dealing with such configurations.

Strictly speaking, Figures 4.5-3 through 4.5-8 apply only when the facings are of equal
thickness. However, the curves arc reasonably accurate for sandwich cylinders having
unecqual facings, provided that the thickness of onc facing is not more than twice the

other.

For elastic cases, use 7= 1. Whenever the behavior is inelastic, the methods of

Section 9 must be employed.

For elastic cylinders the critical transverse shear force (Fv)cr’ measured in units of

pounds, can be computed from the following:

o = + . G-
( V)cr TR, +t) L. (4.6-4)

To compute (FV)cr when the behavior is inelastic, one must resort to numerical inte-

gration techniques.
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4,7 COMBINED LOADING CONDITIONS

4.7.1 General

TFor structural members subjected to combined loads, it is customary to represent
critical loading conditions by mecans of so-called interaction curves. Figure 4.7-1
shows the graphic format usually used for this purpose. The quantity Ri is the ratio
of an applied load or stress to the critical value for that type of loading when acting
alone. The quantity Rj is similarly defined for a second type of loading. Curves of
this form give a very clear picture as to the structural integrity of particular con-
figurations. All computed points which fall within the area bounded by the interaction
curve and the coordinate axes correspond to stable structures, All points lying on or
outside of the interaction curve indicate that buckling will occur. Furthermore, as
shown in Figure 4.7~1, a measure of the margin of safety is given by the ratio of
distances from the actual loading point to the curve and to the origin, For example,
assume that a particular structure is subjected to the combined loading condition

corresponding to point B of Figure 4.7-1.

Then, for proportional increases in Ri and Rj’ the margin of safety (M.S.) can be

computed from the following:

M.S. = —— - 1 (4.7-1)
(Rj)B

As an alternative procedure, one might choose to compute a minimum margin of safety
which is based on the assumption that loading beyond point B follows the path BM.

Point M is located in such a position that BM is the shortest line that can be drawn



between point B and the interaction curve, The minimum margin of safety can then be

calculated as follows:

o OB + BM
Minimum M.S, = —on 1 4.7-2)

),

(Rj)B

Figure 4.7-1. Sample Interaction Curve
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4.7.2 Axial Compression Plus Bending

1.7.2.1 Basic Principles

In References 4-17, 4-18, and 4-19 it has been shown that, for circular sandwich
cylinders subjected to axial compression plus bending, the classical theorctical

interaction curve may be accurately described by the equation

R + (R =1 4.7-3
RIer * ®ew, (4.7-3)
where
ag
(R) - =7 (4.7-4
¢'CL J
@y,
(R) e (4 )
= = 4.7-5
C )
beL (cb)CL
T = T 4 L=
Oy e = Gder (.70
and
o, = Uniform compressive stress due solely to applied axial load,
psi.
o, = Peak compressive stress due solely to applied bending mo-
ment, psi.
(GC)CL = Classical theoretical value for critical uniform compressive
stress under an axial load acting alone, psi.
(Gb)CL = Classical theoretical value for critical peak compressive

stress under a bending moment acting alone, psi.

References 4-17 and 4-18 develop the foregoing result for weak-core constructions
which fail in the shear crimping mode. On the other hand, Reference 4-19 deals
with infinitely long cylinders which fall in the siiff-core and the moderately-stiff-
core categories. Since Equation (4.7-3) is written in terms of classical theoretical
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allowables, it does not include any consideration of the detrimental influences from
initial imperfections. TFor the purposes of this handbook, these influences are treated
by introducing the knock-down factors Y, and % (sce Tigures 4,2-8 and 4.3-2, re-

spectively) to obtain

=1 ' -
RC + Rb “.7-7)
where
%
R = ——— (4.7-8)
¢ YOy,
o
R, = ___(_b) (4.7-9)
b 0c CL

Therefore, the design interaction curve can be drawn as shown in Figure 4. 7-2. Since
no test data is available for sandwich cylinders subjected to combined axial load and
bending, the general validity of this curve has not been experimentally verified. Some
degree of empirical correlation is inherent in the approach since the knock-down fac-
tors ‘/C and %, were established, in part, from sandwich test data (see Sections 4.2
and 4.3), However, even these data were few in number, Therefore, until further
experimental substantiation is obtained, the recommended interaction relationship

can only be considered a '"best-available' method.

1.0

%,

1]

R, 1.0

Figure 4.7-2. Design Interaction Curve for Circular Sandwich Cylinders
Subjected to Axial Compression Plus Bending
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1.7.2.2 Design Equations and Curves
For simply supported, circular, sandwich cylinders subjected to axial compression

plus bending, the following interaction equation may be employed:

R +R =1 (4.7-10)
where
crc
R = e (4.7—11)
¢ ‘yc (OC)CL
%

If

(4.7-12)

Rb

A plot of Equation (4.7-10) is given in Figure 4.7-3.

yb (UC)CL

In Equations (4.7-11) and (4.7-12), the knock-down factors Y, and Y% are those ob-

tained from Figures 4.2-8 and 4.3-2, respectively.

The quantity (60)CL is simply the result obtained by using Y, = 1.0 in the method of

Section 4.2.2.

Plasticity considerations should be handled as specified in Section 9.2 except that,

in this case, one may use

[1 - V82 Et
a. n = T E; for short cylinders, and
A 1L
1 —ye‘? 2 EtEs
b, n =112 5 for moderate-length through long cylinders.
g - f

Equation (4.7-10) may be applied to sandwich cylinders of any length. However, length
considerations should be included in the computation of (60)CL when the structure falls

into the short-cylinder range (sec Section 4.2.2).
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Figure 4.7-3. Design Interaction Curve for Circular Sandwich Cylinders

Subjected to Axial Compression Plus Bending
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P, 1bs

4.7.3 Axial Compression Plus External Lateral Pressure

4,7.3.1 Basic Principles

This scction deals with the loading condition depicted in Figure 4.7-4. The sandwich
cylinder is subjected to uniform external pressure over the cylindrical surface. Axial
loading is imposed as indicated by the forces P. Thesc forces can originate from any
source including external pressures which are uniformly distributed over the end clos-
ures. In addition, it is specified that the ends of the cylinder are simply supported.
This is, during buckling, the ends are constrained such that they experience no radial

or circumferential displacements and they are free of bending moments.

D s Psi

ERREEEERER
FHo

p , psi
Yo

1‘

REERREE

Both Ends Simply Supported

Figure 4.7-4. Circular Sandwich Cylinder Subjected to Axial
Compression Plus External Lateral Pressure

The theoretical basis used here is the classical small-deflection solution of Maki
[4-37]. The design curves given in this handbook were taken directly from that source
and embody the following assumptions:

a. The facings are isotropic.

b. Both facings are of the same thickness.

c. Both facings have identical material properties.
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d. Poisson's ratio for the facings is equal to 0.33.

e. Bending of the facings about their own middle surfaces can be neglected.

f. The core has infinitc extensional stiffness in the direction normal to the
facings.

g. The core extensional and shear rigidities arc negligible in directions

parallel to the facings.

h. The transverse shear moduli of the core are the same in the circum-
ferential and longitudinal directions (GXZ = ny) .

i, The mean radius of the cylinder is large in comparison with the sandwich
thickness.

The theoretical relationship derived by Maki [4-37] is in the form of a complicated
sixth order determinant and no significant advantage would be gained by reproducing
that formulation in this handbook, However, it is important to note that a sufficient
number of terms were retained throughout the derivation to obtain accurate results
when the number of circumferential full-waves equals two (n = 2). If the derivation
had been based on the well-known Donnell approximations [4-8], the results would

not be applicable to structures which buckle in this manner.

The interaction curves given in Reference 4-37 are of the two different types depicted

in Figure 4.7-5 where

E_.t. h

ff
r —_ . "'1
sz 2(1—.332)R2GX7 (4.7-13)

E t.h
7 = -
‘yz 2(1—.332)R2Gy (4.7-14)
Z
Py
R = -2 4.7-15
®er " @) (@719



(R) = — (4.7-16)
¢’ CL
<GX)CL
and

Ef == Young's modulus of facings, psi.

tf = Thickness of single facing, inches.

h = Distance between middle surfaces of facings, inches.,

R = Radius to middle surface of cylindrical sandwich, inches.

G = Core shear modulus associated with the plane perpendicular
X7
to the facings and oriented in the axial direction, psi.
G = Core shear modulus associated with the plane perpendicular

7
¥ to the axis of revolution, psi.
p = Applied external lateral pressure, psi.

v

® ')CI = Classical theoretical value for critical external lateral pressure
v when acting alone, psi.
o, = Uniform axial compressive stress due to applied axial load, psi.
« _)CI = Classical theoretical value for critical uniform axial compres-
N sive stress when acting alone, psi.
L = Over-all length of cylinder, inches.

Note: The value .33 appearing in Equations (4.7-13) and (4.7-14) is an
assumed representative value for the elastic Poisson's ratio of
the facings.

Since the curves of Reference 4-37 were developed from a classical, small-deflection
approach, they do not include any consideration of the detrimental effects from initial
This is evident from the fact that classical theoretical allowables are

imperfections.

used in the ratios (R}))CL and (RC)CL. For the purposes of this handbook, the effects
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Figure 4.7-5. Typical Interaction Curves for Circular Sandwich Cylinders Subjected
to Axial Compression Plus External Lateral Pressure

from initial imperfections are introduced through the replacement of (Rp)CL and

(Rc)CL by the ratios Rp and Rc which are defined as follows:
R = ——p_—X—- (4.7-17)
P (py)CL
R = —(.T.)i— (4.7-18)
¢ Ve (ox)CL

The quantities % and Y, are the knock~down factors discussed in Sections 4.4 and 4.2,
respectively. Values for Yo can be obtained from Figure 4.2-8 while 'yp may be taken

equal to 0,90.

No test data are available for sandwich cylinders which are of the types considered
here and are subjected to axial compression plus external lateral vressure. Therefore,
the general validity of the design curves recommendcd here has not been experimentally

verified. Some degree of empirical correlation is inherent in the approach since the



knock-down factors v and ¥, were established, in part, from sandwich test data (sce
C p

Scctions 4.2 and 4.4). However, even these data were few in number. Therefore,

until further experimental substantiation is obtained, the recommended interaction

curves can only be considered as "hest-available' criteria.



4.7.3.2 Design Equations and Curves

For simply supported, circular, sandwich cylinders subjected to axial compression
plus external lateral pressure, one may employ the interaction curves of Figures

4.7-6 through 4. 7-15 where
Eftf h

v = = 4.7-1
Xz 2(1—-.332)R‘GX7 (4.7-19)

vV o= Pe's 4.,7-20
yz 2(1-.339)R? G (4.7-20)
yz
Py
R =—=2— (4.7-21)
P, (py)CL
UX
R =——oF7 (4.7-22)
&)
¢ YO0 ey

In Equations (4.7-21) and (4.7-22), the knock-down factor Y, is that obtained from

Figure 4.2-8 while 'yp may be taken equal to 0.90.

The quantity (ﬁy)CL is simply the result obtained by using Yp = 1.0 in the methods of

Section 4.4.

The quantity (6X) CL is simply the result obtained by using Y, = 1.0 in the methods of

Section 4.2.
Plasticity considerations should be handled as specified in Section 9.2.

Figures 4.7-6 through 4.7-12 give interaction curves only for cases where Vx' =

4

\Y . 0 (GXZ = Gy ~ ®), Scparate families are provided for each of three selected
y Z

R (R
values for the parameter T (E = 50; 160; and 500) . Graphical interpolation may be
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uscd to obtain results for intermediate values of this parameter. Each family includes

. . mR R )
separate curves for ten different values of the ratio 5N <17i_ =0,1; 0,2; ~=~ 1.0) . In

view of the restrictions on V. and V., these curves can only be used to describe the
X7, vz

behavior of stiff-core constructions. For the purposes of practical design and analysis,

it is proposed here that Figures 4.7-6 through 4.7-12 be considered applicable only

when

th

—_—V <0.05 4.7-23)

h= X7

th
— V <0.05 (4.7-24)
) vz

where

t

&}

Il

Thickness of corc, inches.

It is expected that many realistic sandwich configurations will satisfy these requirements.

Figures 4.7-13 through 4.7-15 present a partial picture of the effects which variations

inV (=V )will have on the interaction relationships. These figures only treat
N7 NG
TR . . .

= 0.1. However, the trends displayed furnish some basis for one

cascs for which
to conjecturc that the curves given for sz = VyZ = 0 would result in conscrvative pre-
dictions if they were applied to sandwich configurations which do not satisfy the In-
equalities (4.7-23) and (4.7~24). However, one should be cautioned against making

sweeping application of this observation in view of the limited scope of the information

shown in Figures 4.7-13 through 4.7-15.



It should be kept in mind that the interaction curves given in Figures 4.7-6 through
4,7-12 include CL values ranging only from 0.1 through 1.0. Since

TR

= 4.7-25
L T ( )
it follows that these curves only embrace the range where
L
3.14 é-ﬁ—s 31.4 (4.7-26)
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Figure 4.7-6. Interaction Curves for Circular Sandwich Cylinders
Subjected to Axial Compression Plus External
Tateral Pressure

4-79



1.0 T
R
— - 50
§§§§§::>; h ’
0.8 k V=V = 0.0_
. ‘§<iEE XZ VZ
TR
C = —
0.6 \N \
C
0,4 5
C. =0.64
L
C. =0.71
L
C. =0.81
c o \
= 0,97
0,2 L
0
0 0.2 0.4 0.6 0.8 1,0
R
p

Figure 4.7-7.

Interaction Curves for Circular Sandwich Cylinders

Subjected to Axial Compression Plus External
Lateral Pressure
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Figure 4.7-8. Interaction Curve for Circular Sandwich Cylinders
Subjected to Axial Compression Plus External
Lateral Pressure
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Figure 4.7-9. Interaction Curves for Circular Sandwich Cylinders
Subjected to Axial Compression Plus External
Lateral Pressure
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Figure 4,.7-10. Interaction Curves for Circular Sandwich
Cylinders Subjected to Axial Compression
Plus External Lateral Pressure
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Figure 4.7-11, Interaction Curves for Circular Sandwich Cylinders

Subjected to Axial Compression Plus External
Lateral Pressure
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Figure 4.7-12.

Interaction Curves for Circular Sandwich Cylinders

Subjected to Axial Compression Plus External
Lateral Pressure
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Figure 4.7-13. Interaction Curves for Circular Sandwich Cylinders
Subjected to Axial Compression Plus External
Lateral Pressure
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Figure 4,7-14. Interaction Curves for Circular Sandwich Cylinders
Subjected to Axial Compression Plus External
lLateral Pressure
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Figure 4.7-15. Interaction Curves for Circular Sandwich Cylinders
Subjected to Axial Compression Plus External
Lateral Pressure
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4.7.4 Axial Compression Plus Torsion
4,7.4.,1 Basic Principles
This scction deals with the loading condition depicted in Figure 4,7-16. The sandwich

cylinder is subjected to end torque T plus axial loading indicated by the forces P.

T, in-lbs Torque T, in-lbs Torque

P,bs / _ _ /\ P, Ibs
\ N\

Both Ends
Simply Supported

Figure 4.7-16, Circular Sandwich Cylinder Subjected to
Axial Compression Plus Torsion

In Reference 4-18 Wang, et al. treat this type of problem but only consider the case
of weak-core configurations which fail in the shear crimping mode. In addition they
assume that the cylinder is long so that the boundary conditions can be ignored. This
small-deflection analysis makes use of the Donnell approximations [4-8] to arrive at

the following interaction relationship:

2 = -
R+ BRIy, = 1 4.7-27)
where
Uc
(R) = —m—— (4.7-28)
c¢c'CL (crc)CL
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(R) = — (4.7-29)
s'CL
e
and
o, = Uniform axial compressive stress duce to applied axial load, psi.
© )CL ~ (lassical theorctical value for critical uniform axial compres-
¢ sive stress when acting alone, psi.
7 = Uniform shear stress due to applied torque, psi.
(—F)CL = (Classical thcoretical value for critical uniform shear stress

due to torque acting alone, psi.
Because Equation (4.7-27) was developed from a classical, small-deflection approach,
it does not include any consideration of the detrimental effccts from initial imperfec-
tions. That is evident from the fact that classical theoretical allowables are used in
the ratios (RC)CL and (RS)CL. For the purposes of this handbook, the effects from
initial imperfections are introduced through the replacement of (RC)CL and (RS)CL by
the ratios RC and RS which are defined as follows:

(¢]

. - —F (4.7-30)
Y OdcL
T
R = — — 4.7-31
s Y Mgy ( !

The quantities Y. and Vg are the knock-down factors discussed in Sections 4.2 and 4.5,
respectively. Values for Y, can be obtained from Figure 4.2-8 while ‘ys may be taken
equal to 0.80. Incorporation of the foregoing substitutions into Equation (4.7-27) then
gives the following interaction relationship for weak-core constructions:

R +R2? =1 (4.7-32)
& S
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In Reference 4-38, Batdorf, et al. deal with the subjecet loading condition for thin-
walled, isotropic (non-sandwichy, circular cylinders. Since, for such constructions,
transverse shear deformations of the shell wall are of negligible imporiance, one
might conjecture that this work could be applied to sandwich cylinders which fall into
the stiff-core category. Based on theoretical considerations modificd by test results,
Batdorf, et al. T4-38Tarrived at the same interaction expression as that given above
as Equation (4.7-32). In view of this, one might choose to view Equation (4,7-32) as
a comprehensive interaction formula for sandwich cylinders. However, some caution
should be observed in implementing this viewpoint, partially because of the fact that
only the extremes of transverse shear stiffness of the core have been considered. In
addition, although the interaction relationship for the subject loading condition should
probably be dependent upon a length parameter, no investigations were made to estab-
lish the sandwich cylinder lengths over which Equation (4.7-32) is a reasonable repre-
sentation of the actual behavior. Furthermore, no test data are available for sandwich
cylinders which are of the types considered in this handbook and are subjected to axial
compression plus torsion. Therefore the general validity of Equation (4.7-32) has not
been experimentally verified. Some degree of empirical correlation is inherent in the
approach since the knock~down factor yc was established, in part, from sandwich test
data (sce Section 4.2). However, even these data were few in number. Therefore,
until further theoretical and experimental investigations are accomplished, the inter-

action relationship cited here can only be considered as a "best-available" criterion.
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4.7.4.2 Design Equations and Curves
For simply supported, circular, sandwich cylinders subjected to axial compression
plus torsion, one might choose to employ the interaction formula

RC + Rsz' =1 (4.7-33)

which is plotted in Figure 4.7-17 and where

R = _ e (4.7-34)
¢ yc (oc)CL
T
R =—0" (4.7-35)
s ys (T)CL

In Equations (4.7-34) and (4.7-35), the knock-down factor Y is that obtained from

Figure 4.2-8 while Y, may be taken equal to 0.80.

The quantity (Ec) cL is simply the result obtained by using Y, = 1.0 in the methods of

Section 4,2.

The quantity (1—')CL is simply the result obtained by using ys = 1.0 in the methods of

Section 4.5.
Plasticity considerations should be handled as specified in Section 9.2,

Attention is drawn to the fact that, in Section 4.7.4.1, several factors are cited which
shed considerable doubt upon the reliability of results obtained from the indiscriminate
use of Equation (4.7-33) and Figure 4.7-17. In view of these uncertainties, one might
often choose to employ the straight-line interaction formula

R +R =1 (4.7-36)
C S
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This relationship can be used with confidence for

which is plotted in Figure 4. 7-18.

any length of cylinder and for any region of transverse shear rigidity of the core since

experience has shown that the linear interaction formula is never unconservative for

However, in many cases it will, of course, introduce ¢xces-—

shell stability problems.

sive conservatism.

Conditional Interaction Curve for Circular Sandwich Cylinders

Subjected to Axial Compression Plus Torsion

Figure 4.7-17.
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4.7.5 Other Loading Combinations

4.7.5.1 Basic Principles

In Scetions 4.7.3 and 4.7.4 the following combined loading conditions are treated:
a. Axial Compression plus External Lateral Pressure.

b. Axial Compression plus Torsion.

The corresponding interaction rclationships can be used for certain additional com-
binations by recognizing that
a. the peak axial stress due to an applied bending moment can be converted
into an equivalent uniform axial stress, and
b. the peak shear stress duc to a transverse shear force can be converted
into an equivalent uniform torsional shear stress.,
With this in mind, the design equations and curves of Scction 4.7.3.2 can be used for
the combination of AXIAL COMPRESSION PLUS BENDING PLUS EXTERNAL LATERAL

PRESSURE if one simply substitutes the quantity o’ for o where
X X

Ye
o = @) *l=—)@) (4.7-37)
X x'c \¥ x'b
b
and
(O‘X)C = Uniform axial compressive stress due solely to applied axial
load, psi.
(ox)b = Peak axial compressive stress due solely to applied bending
moment, psi.
Y, = Knock-down factor associated with axial compression and as
given in Figurc 4.2-8, dimensionless.
Y, ~ Knock-down [actor associated with pure bending and as given in

Figure 4.3-2, dimensionless.
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This formula is based on the findings reported in Section 4.3.

In addition, the design equations and curves of Section 4.7.4.2 can be used for the
combination of AXIAL COMPRESSION PLUS BENDING PLUS TORSION PLUS TRANS-
VERSE SHEAR FORCE if one simply substitutes the quantities oé and 7’ for o, and T,

respectively, where

Y
4 = + -—C M-
o, ©.), (y >(oc)b (4.7-38)
b
’ 0.80
= +— = +0.64 L7-
TS Tptigs v - Tt 0Ty (4.7-39)
and
(oc)C = Uniform axial compressive stress due solely to applied axial
load, psi.
(crc)b = Peak axial compressive stress due solely to applied bending
moment, psi.
T = Uniform shear stress due solely to applied torque, psi.
Ty © Peak shear stress due solely to applied transverse shear force,

psi.
Y, and Y, T Knock-down factors specified above.
Equation (4.7-38) is based on the findings reported in Section 4.3 while Equation

(4.7-39) stems from a comparison of Equations (4.5-9) and (4.6-3).

Since no sandwich test data are available to substantiate the foregoing procedures, they

can only be regarded as '"best-available" criteria.
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4.7.5.2 Design Equations and Curves
For the combination of AXIAL COMPRESSION PLUS BENDING PLUS EXTERNAL

LATERAL PRESSURE, substitute o':( for o and use the design equations and curves

given in Section 4.7.3.2. The quantity cr; is defined as follows:
Ye
[ K -
o, = CJo* ——”’b @)y (4.7-40)

Ilowever, the quantity (6X)CL used in Section 4.7.3.2 remains as defined in that

section.

Tor the combination of AXTAL COMPRESSION PLUS BENDING PLUS TORSION PLUS
TRANSVERSE SHEAR FORCE, substitute oc' for oc and 7’/ for T in the design equations

and curves given in Section 4.7.4.2. The quantities cé and 1’ are defined as follows:

’yC
! = +{ — - 1
a, @), 5 @) (4.7-41)
b
' 0.80 B
TS Tp + 125 Ty Tr +0.64TV (4.7-42)

However, the quantities (c'rc)CL and (;)CL used in Section 4.7.4.2 remain as defined

in that section.

The foregoing criteria will still apply, of course, where one or more of the specified

applied loads equal zero,
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5

GENERAL INSTABILITY OF TRUNCATED CIRCULAR CONES

5.1 AXIAL COMPRESSION
5.1.1 Basic Principles
It appears that no significant theoretical solutions have been published for axially com-
presscd sandwich cones. Therefore, for the purposes of this handbook, the cquivalent-
cylinder concept of Seide, et al. [5-1] has been adopted as a practical expediency.
Based on a large array of test data from thin-walled, isotropic (non~-sandwich), trun-
cated cones, Seide, et al. concluded that the critical stresses for such cones can be
taken equal to the values for circular cylinders which satisfy the following conditions:
a. The wall thickness of the equivalent cylinder is equal to that of the cone.
In the case of sandwich constructions, the logical extension of this con-
dition is that the equivalent cylinder have the same facing and core thick-

nesses found in the cone.

b. The radius of the equivalent cylinder is equal to the finite principal radius
of curvature at the small end of the cone.

c. The length of the equivalent cylinder is equal to the slant length of the
cone.

In Reference 5-2, Baker presents test data from two axially compressed, truncated
sandwich cones having vertex half-angles equal to 15 degrees. These data were used
in conjunction with the foregoing equivalent-cylinder concept to arrive at knock~-down

factors Yo The results are shown in Figure 5.1-1, along with data obtained from
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axially compressed sandwich cylinders. This figure also includes the design curve
recommended in Section 4.2.2 for such cylinders. It can be seen that the data from
the cones are in favorable agreement with the results obtained from cylinders. This
provides at least a small degree of experimental substantiation for application of the
equivalent-cylinder approach to sandwich cones. However, in view of the scarcity of
test points from conical specimens, this method can presently be considered as only

a ""best-available'" criterion.

7]
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5.1.2 Design Equations and Curves

For simply supported, truncated, right-circular, sandwich cones subjected to axial

compression, the critical stresses (J'crl and Ucre (for facings 1 and 2, respectively)

may be computed from the equations and curves of Section 4.2,2, provided that the

following substitutions are made:

a. The values t, t,, t , and h are measured as shown in Figure 5.1-2,

(There is no preference as to which facing is denoted by the subscripts
lor2.)

b. The radius R is replaced by the effective radius Re shown in Figure 5.1-2,

c. The length L is replaced by the effective length Le shown in Figure 5,1-2,

=\

Tt
T
.

js

—

V-
Both Ends
Simply Supported

g v R o Axis of
P, lbs & os P, lIbs small Revolution
— *__\_r__ _ - -
R .
o small View A
’ l’x,\
NOTE: fol,t, h R » R, and
T stall”
L [u are all micasored inouimnts of
3 inches white ¢ i< measured in

\ degrees,

Figure 5.1-2. Truncated Sandwich Cone Subjected to Axial Compression
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The applied axial load P and the computed stresses are associated with the directions

indicated in Figure 5.1-2. In addition, since the maximum stresses occur at the small

end of the cone, the critical values are associated with this location. For both elastic

and inelastic cases, one can therefore write

P = 27R ( +0 )cos2 5.1-1
cr m (] C’.CI‘lt]' Cretz o (0 )
where
R
small
R = =& (5.1-2)
[ COS ¥

It is recommended that the approach specified here be applied only to cases where
«a < 30 degrees.
Plasticity reduction factors should always be based on the stress at the small end of

the cone (see Section 9).



5.2 PURE BENDING

5.2.1 Basic Principles

It appears that no significant theoretical solutions have been published for sandwich

cones subjected to pure bending. Therefore, for the purposes of this bandbook, the

equivalent-cylinder concept of Seide, et al. has been adopted as a practical expediency.

Based on a large array of test data from thin-walled, isotropic (non-sandwich), trun-

cated cones, Seide, et al. concluded that the critical peak stresses for such cones can

be taken equal to the corresponding values for circular cylinders which satisfy the

following conditions:

a. The wall thickness of the equivalent cylinder is equal to that of the cone.

In the case of sandwich constructions, the logical extension of this condi-
tion is that the equivalent cylinder have the same facing and core thick-

nesses as are found in the cone.

b. The radius of the equivalent cylinder is equal to the finite principal radius
of curvature at the small end of the cone.

c. The length of the cquivalent cylinder is equal to the slant length of the cone.

No test data are available for sandwich cones which are of the types considered in this
handbook and are subjected to pure bending. Therefore, the validity of the method
recommended here has not been experimentally verified and can only be considered as

a "best-available' approach,



5.2.2 Design Equations and Curves
For simply supported, truncated, right-circular, sandwich concs subjected to pure
bending, the critical peak stresses O, and 0. (for facings 1 and 2, respectively)

1 o

may be computed from the equations and curves of Section 4.5.2, provided that the

following substitutions are made:

a. The values t, t,, tc, and h are measured as shown in Figure 5.2-1.
(There is no prefercnce as to which facing is denoted by the subscripts
1or?2,)

b. The radius R is replaced by the effective radius R, shown in Figure 5.2-1.

c. The length L is replaced by the effective length L, shown in Figure 5.2-1.

Both Ends
.+~ Simply Supported

M, Inn=1bs
Axis of

Revolution

Lo
¢ M, in=1bs

o
small )
R =
€ cos &
b

T View A

pS[
Note: t., t, U, I, R , R, and L
/‘\ ore e Tgr e small’ ¢ c

are all measured in uvnits of inches

\7/ T~ while @vis measured in degrees,

Figure 5.2-1. Truncated Sandwich Cone Subjected to Pure Bending
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The applied bending moment M and the computed stresses are associated with the
directions indicated in Figure 5,2-1. In addition, since the maximum stresses occur
at the small end of the cone, the critical values are associated with this location.

When the behavior is elastic, one can therefore write

= 2 t 3 .2-1
M, = TR (Ucrl t, +Ucr2 2) cos® (5.2-1)
where
R
small
R = —=22- (5.2-2)
e cos g

To compute Mcr when the behavior is inelastic, one must resort to numerical inte-

gration techniques.

It is recommended that the approach specified here be applied only to cases where

o < 30 degrees.

Plasticity reduction factors should always be based on the peak compressive stress at

the small end of the cone (see Section 9).
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5.3 EXTERNAL LATERAL PRESSURE
5.3.1 Basic Principles
The loading condition considered here is depicted in Figure 5.3-1. As shown, the cone

is subjected to a uniform external lateral pressure. The axial component of this loading

P Ibs/in
Both Ends
«—" Simply Supported

R
large

p, pst Wer 1bs/in

Figure 5.3-1. Truncated Cone Subjected to Uniform External Lateral Pressure

is reacted by a uniform compressive running load at the large end of the cone. This
results in principal membrane stresses which may be computed as follows, when the

core has a relatively high extensional stiffness in the direction normal to the facings:

R.
=P (5.3-1)

H TGt

P (R * Rsmall) <1_ Rsmall>

M t, +t) 2 cos ¢ R

[
I
o



where

R, = Coia (5.3-3)
and
O'H = Hoop membrane stress, psi.
o Meridional membrane stress, psi.
p = Uniform external lateral pressure, psi.

R, = Finite principal radius of curvature of middle surface, inches.

t,and t, = Thicknesses of the facings, inches. (There is no preference as
to which facing is denoted by the subscripts 1 or 2.)

R = Radius of middle surface measured perpendicular to the axis of
revolution, inches.

R = Radius of middle suriace, at small end of cone, measured per-
small . : . .
pendicular to the axis of revolution, inches.
R = Radius of middle surface, at large end of cone, measured per-
large . . . :
pendicular to the axis of revolution, inches.
a = Vertex half-angle of cone, degrees.

Since the radii R and R, vary with the axial location, the stresses oy and oy are non-
uniform over the conical surface. The maximum values for each of these quantities

occur at the large end of the cone.

It appears that no significant theoretical solutions have been published for the stability
of truncated sandwich cones which are subjected to uniform external hydrostatic pres-
sure. Therefore, for the purposes of this handbook, the equivalent-cylinder approach
suggested in Reference 5-11 has been adopted as a practical expediency. Based on

this method, the critical lateral pressure for the truncated cone may be taken equal

5-10



to that for an equivalent circular sandwich cylinder which satisfies the following

conditions:

a. The facing and core thicknesses of the equivalent cylinder are the same
as those found in the conce.

b. The length of the equivalent cylinder is equal to the slant length of the cone.

c. The radius of the equivalent cylinder is equal to the average finite principal
radius of curvature of the cone. That is,

Rsmall * R1
R = arge (5.3-4)
e 2 cosq

The critical lateral pressure for the equivalent cylinder can be obtained by using the

equations and curves of Section 4.4.2,

Since no test data are available from truncated sandwich cones subjected to external
lateral pressure, the reliability of the foregoing approach has not been experimentally

verified and can only be considered as a '"best-available' technique.

-11
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5.3.2 Design Equations and Curves
For a simply supported, truncated, right-circular, sandwich cone subjected to uni-
form, external, lateral pressure, the critical pressure may be taken equal to the
critical lateral pressure for an equivalent sandwich cylinder which satisfies the
following:

a. The values t, t, tc, and h are measured as shown in Figure 5.3-2.

b. The length is taken equal to the slant length Lo.

c. The radius is denoted Re and is computed from the formula
R + R
small large
R = (5.3-5)
e 2cosy

where R

small’ Rlarge’ and ¢« are as shown in Figure 5.3-2,

: -~

1 h

I w5 e
Rlargc )L/ R Ry
>

_—BOTH ENDS VIEW A
SIMPLY SUPPORTED

NOTE: t, 1. T, I R R

R R
¢ e 2" “small| large’
and L. are all measured in units of
inches while ¢ is measured in degrees,

Figure 5.3-2. Truncated Sandwich Cone
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The critical lateral pressure for the equivalent sandwich cylinder can be obtained by

using the equations and curves of Section 4.4.2,

Plasticity considerations should be handled as specified in Scetion 9.2, The plasticity
reduction factor n should always be based on the principal membrane stresses al the
large end of the cone where

R
- P large -
“H (t. + 1.)cospy (5.3

R
e small \
g, = |1~ 2 (5.53-7)

R
< large
1t is recommended that the approach specified here be applied only to cases where

o = 30 degrees.



5.4 TORSION

5.+.1 Basic Principles

It appears that no significant theoretical solutions have heen published for sandwich
cones subjected to torsion,  Thercefore, for the purposes of this handbook, the
equivalent-cylinder concept of Seide [5-3] has been adopted as a practical expediency,
Based on the analysis of his numerical computations for thin-walled, isotropic (non-
sandwich), truncated concs, Secide concluded that the eritical torques for such shells
can be taken cqual to the values for circular eylinders which satisly the following

conditions:

a. The wall thickness of the equivalent cylinder is cqual to that of the cone.
In the case of sandwich constructions, the logical extension of this condi-
tion is that the equivalent evlinder have the same facing and core thick-
nesses as arce found in the conce,

h. The length of the equivalent eylinder is equal to the axial length of the cone.
c. The radius of the equivalent eylinder is computed [rom the relationship
1 R] - 1 1 y i
R = (R cosg) 11 |- (1 —2EBC 2 BrES (5.4-1)
€ small 2 R 2
small small
where
R = Radius of equivalent cylinder, inches.
c
Rsm no Radius at small end of cone, inches (mecasured perpendicular
a to the axis of revolution).
Rl = Radius at large end of cone, inches (measured perpendicular
arge
& to the axis of revolution).
o = Vertex half-angle of cone, degrees



In Reference 5-1, Seide, et al. present test results from ten isotropic (non-sandwich),
truncated cones which were subjected to torsion. These tests included specimens
having vertex half-angles (o) of both 30 and G0 degrees. The agrecment of these
results with equivalent-cylinder predictions was similar to that obtained from com-
parisons of test data from isotropic (non-sandwich) cylinders against the corresponding
small-deflection theoretical solutions. For conical sandwich constructions it was
therefore decided to use the same¢ knock-down factor ('ys = 0.80) as was selected in

Section 4.5 for sandwich cylinders under torsion.

No test data are available for sandwich cones which are of the types considered in this
handbook and are subjected to torsion. Therefore the method recommended here has
not been experimentally verified and can only be considered as a '"best-available"

approach.



5.4.2 Design Equations and Curves
For simply supported, truncated, right-circular sandwich cones subjected to torsion,

the critical torque may be computed from the cquation

T = 2qR 2ttty T (5.4~2)
cr e “ ler
where
TC = (ritical lorque for sandwich conc subjected to torsion, in-lhs.
T
R = Radius of equivalent sandwich cylinder, inches [ sce Equation
53
t, and t, = Thicknesses of the facings, inches. (There is no preference
as to which facing is denoted by the subscript 1 or 2.)
T::r = Critical shear stress for cquivalent sandwich cylinder when

subjected to torsion, psi. (It should be noted that this value is
not equal to the critical shear stress of the conical sandwich
construction.)

The radius R is computed from
e

q

1 Rl rg i 1 Rlarge °
arge
= 208 =1+ =2 = == 5.4-3
Re (Rsmau(’”so‘) [2 < R >} [:< "R >] (5. 4-3)
small small

where R , and o are as shown in Figure 5.4-1,

small’ Rl arge
The stress T::r may be computed from the equations and curves of Section 4.5.2 pro-
vided that

a. The values t, t_, tc’ and d are measured as shown in Figure 5.4-1.

b, The radius R is replaced by the effective radius RC.

c. The length L is taken equal to the axial length of the cone (see Figure
5.4-1).

5-16



el

Both Ends >/
Simply Supported /‘ — T e
\ /< I
A o N
Rl
argo
o ¥ 2
sinall
Rsmall Axis of
T, tn-lhs Revolution
— % —— — B e e
I, in-ibs View A
NOTE: Tt 0, h, d, L, Bsialls
and Rlarge are alt measured
i units of inches white o s
measured in degrees,
|
! |

Figure 5.4-1, Truncated Sandwich Cone Subjected to Torsion

In a truncated cone which is subjected to torsion, the maximum shear stress will occur
at the small end. Hence, for sandwich constructions of this type, the critical stress

value is associated with that same location. One can therefore write

Tcr
T = 5 r——Y (5.4-4)
cr 2m Rsmall G+t
where
Tcr = Critical shear stress for truncated sandwich cone when subjected

to torsion, psi.

It is recommended that the approach specified here be applied only to cases where

o < 30 degrees.

Plasticity reduction factors should always be based on the stress at the small end of

the cone (see Section 9).



5.5 TRANSVERSE SHEAR

5.5.1 Basic Principles

The case considered here is that of a truncated sandwich cone which is subjected only
to transverse shear forces as shown in Figure 5.5-1. Note that all transverse sce-

tions, such as A-A, are subjected to the same magnitude of shear load.

r—A Both Ende-

// Simpiy Supported

1 1, 1bs
v

Figure 5.5-1. Truncated Cone Subjected to Transverse Shear

This, of course, is a purely hypothetical loading condition since it does not result in
over-all static cquilibrium of the structure. To obtain the necessary balance of forces
and moments, it is required that an external bending moment also be present. Never-
theless, the hypothetical unbalanced loading system does prove to be of interest since
the combined effects of transverse shear and its associated bending are usually analy-
zed by using an interaction equation. Such a relationship involves both the critical
peak meridional stress under a bending moment acting alone and the critical peak

shear stress corresponding to the subject artificial loading condition.

It appears that no significant theoretical solutions have heen published for sandwich

cones subjected to transverse shear. Therefore, for the purposes of this handbook,

5-18



the concept used for sandwich cylinders (see Scction 4, 6) will also be adopted here as
a practical expediency. As noted in Section 4.6, the results from a scries of tests
[5-4 and 5-5] on isotropic (non-sandwich), circular and elliptic cylinders led to the
conclusion [5-6] that

Lower-Bound 74, TestValues for
Transverse Shear Loading

~ 1,25 (5.5-1)
Small-Deflection Theoretical
L Values for Torsional Loading
To properly understand this ratio, it should be observed that for torsional loading of a
thin-walled circular cross scction the shear stress 7., is uniformly distributed around
the circumference. On the other hand, under transverse shear loading, the shear

stress is nonuniform and the value 7,,. then corresponds to the peak intensity which

occurs at the neutral axis.

For the lack of a better approach, it was recommended in Section 4. 6 that Equation
(5.5-1) be used for the design and analysis of sandwich cylinders that are subjeccted to
transverse shear forces. For the same reason, it is recommended here that Equa-
tion (5.5-1) also be used for truncated sandwich cones. In the latter case, the re-
quired small-deflection theoretical Ter values for torsional loading should be obtained
as specified in Section 5.4, with the exception that Yq must now be taken equal to unity.
No sandwich test data are available to substantiate the reliability of this practice.
Until such data do become available, one can only regard this procedure as a '"best-

available!" approach.

911
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5.5.2 Design Equations and Curves
For simply supported, right-circular, truncated sandwich cones subjected to trans-

verse shear forces, the critical peak shear stress may be computed from the equation

= 1.25 (1 ) (5.5-2)

cr €T Torsion

=1.0

s
where
(Tcr) = The critical torsional shear stress obtained by substituting
Torsion ¥g = 1.0 throughout the methods cited in Section 5.4, psi.
'ys = 1,0

In a truncated cone which is subjected to transverse shear, the maximum shear stress

will occur at the small end. Hence, the critical stress value is associated with that

location.

Plasticity reduction factors should always be based on the stress at the small end of the

cone (see Section 9).

When the behavior is elastic, the critical transverse shear force (FV)cr can be com-
puted from the following:

(F = 7R (t + )T (5.5-3)

)

v <

cr small

'o compute (FV)cr when the behavior is inelastic, one must resort to numerical inte-

gration technicques.



5.6 COMBINED LOADING CONDITIONS
5.6.1 General

For structural members subjected to combined loads, it is customary to represent
critical loading conditions by means of so-called interaction curves. Figurc 5.6-1
shows the graphic format usually used for this purposc. The quantity R; is the ratio
of an applied load or stress to the critical value for that type of loading when acting
alone. The quantity Rj is similarly defined for a second type of loading. Curves of
this form give a very clear picture as to the structural integrity of particular con-
figurations. All computed points which fall within the area bounded by the interaction
curve and the coordinate axes correspond to stable structures. All points lying on
or outside of the interaction curve indicate that buckling will occur. Furthermore,
as shown in Figure 5.6-1, a measure of the margin of safety is given by the ratio of
distances from the actual loading point to the curve and to the origin. For example,
assume that a particular structure is subjected to the combined loading condition

corresponding to point B of Figure 5.6~-1.

R

Figure 5.6~1. Sample Interaction Curve
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Then, for proportional increases in Ri and Rj’ the margin of safety (MS) can be com-

puted from the following:

R,
( ])D

-1 (5.6-1)

As an alternative procedure, one might choose to compute a minimum margin of safety
which is based on the assumption that loading beyond point B follows the path BM.
Point M is located in such a position that BM is the shortest line that can be drawn
between point B and the interaction curve. The minimum margin of safety can then

be calculated as follows:

OB + BM
Minimum MS = — OB " 1 (5.6-2)

5=22



5.6.2 Axial Compression Plus Bending

5.6.2.1 Basic Principles

In Scction 4.7.2 this loading condition is treated for the case of circular sandwich
cylinders. For such configurations, it was concluded that one may use the following

interaction relationship:

R + =1 5.6-
. R (5.6-3)
where
9
R = - (5.6-4)
c 7,60y
%
R =7 (5.6-5)
"o (UC)CL
and
o, = Uniform compressive stress due solely to applied axial load,
psi.
o, = Pcak compressive stress due solely to applied bending moment,
psi.
G, ~ Classical theoretical value for critical uniform compressive
CL stress under an axial load acting alone, psi.

y_ = Knock-down factor given by Figure 4.2-8, dimensionless.

Yy T Knock-down factor given by Figure 4.3-2, dimensionless.

In this handbook it is proposed that for truncated sandwich cones the cases of pure
bending and of axial load acting alone both be treated by means of an equivalent-
cylinder concept (see Sections 5.1 and 5.2). For both types of loading, the radius
of the cquivalent cylinder is taken equal to the finite principal radius of curvature at

the small end of the cone, It should be noted that the maximum stresses from both
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bending and axial compression occur at this same location. In view of thesc scveral
considerations, it is assumed here that Equations (5.6-3) through (5.6-5) can be
applicd to truncated sandwich cones if

a. o, and g, arc beth computed for the meridional dircction and at the small
end of the cone, and

b. the values for Ye» and W,» and (G ) c, 3¢ those Wthh apply to the equivalent
sandwich cylinder described in Sectlons 5.1and 5.2, (It is important to

keep in nund that Y. must be taken cqual to 1.0 when computing the value

(O'C)C

Since no test data have been published for truncated, sandwich cones subjected to axial

compression plus bending, the recommended approach has not been experimentally

verified and can only be regarded as a "best-available" method,
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5.6.2.2 Design Equations and Curves
For simply supported, truncated, right-circular sandwich cones subjected to axial

compression plus bending, the following interaction equation may be employed:

RC + Rb = 1 (5.6~6)
where
UC
R = — 5.6-7
o 5 6 (5 )
C C CL
g
b
Rb = ——(_—)———— (5.6-8)
‘yb OC CL

Equation (5.6-6) may be usecd for cones of any length, A plot of this equation is given

in Figure 5.6-2.

The quantity o is the uniform meridional compressive stress, at the small end of the

cone, due to the axial force acting alone.

The quantity o, is the peak meridional compressive stress, at the small end of the
b

cone, due to the bending moment acting alone.

The quantities 7y, Yy and (GC) are those which apply to the equivalent sandwich

CL

cylinder described in Sections 5.1 and 5.2.

In Equations (5.6-7) and (5.6-8), the knock-down factors v, and Y, are those obtained

from Figures 4.2-8 and 4.3-2, respectively.

The quantity (c_rC)CL is simply the result obtained by using Yo © 1.0 in the method of

Section 4.2.2,



Plasticity considerations should be handled as specified in Section 9.2 except, that in

this case, one may usc

1 —ve’“ Et
- —— for short cones, and
(a) 77 | 1 _ V2 Ef ’

for moderate-length through long cones.

[ 1 -7

1
_l—yz]? E E
e V t s
E
f

The plasticity reduction factor n should always be based on the peak compressive stress

at the small end of the cone.
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Figure 5.6-2. Design Interaction Curve for Truncated Sandwich Cones
Subjected to Axial Compression Plus Bending
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5.6.3 Uniform External Hydrostatic Pressure

5.6.3.1 Basic Principles

The loading condition considered here is depicted in Figure 5.6-3. As shown, the cone
is subjected to a uniform external pressure over the lateral surface and bothend closures.

Both Ends
Simply Supported

P, pst

p, psi

Figure 5.6-3. Truncated Cone Subjected to Uniform
External Hydrostatic Pressure

This results in principal membrane stresses which may be computed as follows when

the core has a relatively high extensional stiffness in the direction normal to the

facings:
ag = __.p_l??_ (5 6_9)
H  (t +t) ‘
PR, -
= = 5.6-10
M T 2@ L) (5.6-10)
where

R = (5.6-11)



and

UH = Hoop membrane stress, psi.
On Meridional membrane siress, psi,
p = Uniform external hydrostatic pressure, psi.
R, = Finite principal radius of curvature of middle surface, inches.
t,and t. = Thicknesses of the facings, inches. (There is no preference

as to which facing is denoted by the subscripts 1 or 2.)

R - Radius of middle surface measured perpendicular to the axis
of revolution, inches.

o — Vertex half-angle of cone, degrees.
Since the radii R and R vary with the axial location, the stresses UH and ”I\I arc non-
uniform over the conical surface., The maximum values for cach of these quantities

occur at the large end of the cone.

It appcars that no significant theoretical solutions have been published for the stability
of truncated sandwich cones which are subjected to uniform external hydrostatic pres-
surc. Therefore, {or the purposcs of this handbook, the cquivalent-cylinder approach
of Seide, et al. [5-17 has been adopted as a practical expediency. Based on a large
array of test data {from thin-walled, isotropic (non-sandwich), cylinders and truncated
cones, Seide, ct al. concluded that the critical hydrostatic pressures for such cones
can be taken equal to the values for equivalent circular cylinders which satisfy the
following conditions:
a. The wall thickness of the equivalent cylinder is equal to that of the cone,
In the case of sandwich constructions, the logical extension of this condi-
tion is that the cquivalent cylinder have the same facing and core thick-

nesses as arce found in the cone.
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b. The length of the equivalent cylinder is cqual to the slant length of the cone.

c. The radius of the equivalent cylinder is equal to the average finite principal
radius of curvature ol the conc. That is,

R + R
small large

R - (5.6-12)
c 208 o
where
Re ~ Radius of middle surface for equivalent cylinder, inches.
n o Radius of middle surface at small end of cone (measured
ma
S perpendicular to the axis of revolution), inches.
Rlargc = Radius of middle surface at large end of cone (measured

perpendicular to the axis of revolution), inches.
The critical hydrostatic pressure for the equivalent cylinder can be obtained by using

the equations and curves of Section 4.7.3.

The only available experimental results for conical sandwich shells under uniform
external hydrostatic pressure arc the data from two tests conducted by North American
Rockwell, Corp. [5=7 and 5-87] in conjunction with the Navajo missile program. To
assist in the preparation of this handbook, an analysis was made of the result published
in Reference 5-7. The other specimen was not studied since it was stressed too deeply
into the plastic region. The specimen of Reference 5-7 was also inelastic but the
stresses in this instance were low enough to permit reliable computations. Using the
approach of the present section in conjunction with the plasticity reduction criteria of
Section 9, the design critical pressure was computed to be 36.4 psi. This is in satis-

factory agreement with the experimental value of 43.6 psi.



The foregoing substantiates, to a very small degree, the reliability of the equivalent-
cylinder concept recommended here. However, in view of the lack of a sufficient

number of test results, this approach can presently be considered as only a "best-

available' method.

1]
|
o
o



5.6.3.2 Design Equations and Curves
For a simply supported, truncated, right-circular sandwich cone subjected to uniform,
external, hydrostatic pressure, the critical pressurce may be taken cqual to that for an
equivalent sandwich cylinder for which

a. The values t, t., L., and h are measurcd as shown in Figure 5.6-4.

b. The length is taken equal to the slant length LO of the cone as shown in
Figure 5.6-4.

c. The radius is denoted Re and is computed from the formula
R + R
1
R = smal large (5.6-13)
e 2C08 ¢

where R and o are as shown in Figure 5.6-4.

’ R’ 2
small’” large

: <

h

1
t
C
R
large )/ R
R "2
t
T
VIEW A
BOTH ENDS
SIMPLY SUPPORTED
NOTE: t., t, t,h R R, R ., R .
1 2 ¢ 2" small”  large

and Le ate all measured in units of
inches while & is measured in degrees,

Figure 5.6-4. Truncated Sandwich Cone

The critical hydrostatic pressure for the equivalent sandwich cylinder can be obtained
from the cquations and curves of Section 4.7.3 if the ratios R and R are now defined
c p

as follows:



R o= = (5.6-14)

c
P -
R = 55 (5.6-15)
p Vp py CL
where
p = Uniform, external, hydrostatic pressurc applied to lateral

surfaces and end closures of the cquivalent sandwich cylinder,
psi.

In Equations (5.6-14) and (5.6-15), the knock-down factor Yo is that obtained from

Figure 4.2-8, while -yp may be taken equal to 0.90,

It should be noted that

- xCL ¢
: — 5.6-16
OJder T T ) 2.6-16)
or
20 t, 4t
5 26 i) .
Pler, ™ R ».6-17)
e
where
(6 ) = Classical theoretical value for critical uniform axial com-

pressive stress when acting alone on the cquivalent sandwich
cylinder. This value can be obtained by using Y. = 1.0 in the
equations and curves of Section 4.2.

The value @V)CL can be obtained by using yp = 1.0 in the equations and curves of

Scction 4.4,

Plasticity considerations should be handled as specified in Section 9.2. The plasticity
reduction factor 7 should always be based on the principal membrane stresses at the

large end of the cone where,



p Rl
rge
.. = ars (5.6-18)

H (t, +t,) (cos o)

R
o, = " large (5.6-19)
M 2, *t) (cos o) 0

It is recommended that the approach specified here be applied only to cases where

o < 30 degrees.



5.6.4 Axial Compression Plus Torsion

5.6.4.1 Basic Principles

The loading condition considered here is depicted in Figure 5.6-5. The axial load P
can originate from any source including external pressurcs which are distributed

uniformly over the end closures.

T, 1u=ibs rorque

T, in=1bs torque

P, Ibs

Both Ends
Simply Supported

Figure 5.6-5. Truncated Cone Subjected to Axial
Compression Plus Torsion

It appears that no significant theoretical solutions have been published for the stability
of truncated sandwich cones under this combination of loads. However, MacCalden

and Matthiesen [5-9 ] have arrived at certain conclusions for non-sandwich shells under
such loading and, for the purposes of this handbook, these results provide the basis for
an expedient engineering approach to the case of conical sandwich constructions., Based
on a large array of test data from Mylar specimens, MacCalden and Matthiesen con-
cluded that the following interaction relationship could be applied to thin-walled, iso-
tropic (non-sandwich), truncated cones:

R +R2 =1 (5.6-20)



where

P

R = (5.6-21)
C 5 )
Per Empirical
T
R = (5.6-22)
> (Tep)
Cr’Empirical
and
(ﬁcr) L. = FEmpirical lower-bound value for the critical axial load
Empirical .
when acting alone, lbs.
(Tcr) = Empirical lower-bound value for the critical torque when

E irical
apirt acting alone, in-lbs.

This result is identical to that given in Reference 5-10 for thin-walled, isotropic (non-
sandwich) cylinders subjected to axial compression plus torsion. One might, therefare,
conjecture that in the case of sandwich constructions the interaction curves for trun-
cated cones under the subject loading condition are of the same shape as those pre-
sented in Section 4.7.4.2 for circular cylinders. The design equations and curves
recommended here are based on this premise. That is, one might choose to view the
formula,

Rc + RS2 =1 (5.6-23)
as a comprchensive interaction equation for truncated cones of both isotropic (non-
sandwich) and sandwich construction. However, it is important to note here that
MacCalden and Matthiesen observed that the presence of even a very small axial load
made the torsionally-loaded conical shell much more sensitive to imperfections than
was the case when no axial load was applied at all. They, therefore, recommended

that whenever Rg is non-zero, the same knock—down factor be employed in computing



(T as is used in the calculation of (ﬁcr) It was further speci-~

Cr)Empirical Empirical”

fied that this single knock-down factor should be taken equal to that which applies for

the case of axial compression acting alone. The same practice is adopted here,

Caution should be exercised in implementing the foregoing recommendations, partially
because only the extremes of transverse shear rigidity of the core have been consid-
cred (see Section 4.7.4.1). In addition, although the interaction relationship for the
subject loading condition should probably be dependent upon a length parameter, no
investigations were made to cstablish the sandwich lengths over which Equation (5.6-23)
is a reasonable representation of the actual behavior. Furthermore, no test data have
been obtained for sandwich cones subjected to axial compression plus torsion. There-
fore, the general validity of Equation (5.6-23) has not becn oexperimentally verified

and can only be regarded as a 'best-available" approach,



5.6.4.2 Design Equations and Curves

For simply supported, truncated, right-circular sandwich cones subjected to axial

compression plus torsion,

one might choose to employ the interaction formula,

which is plotted in Figure 5.6-6 and where,

-

@)

(Toy)

small

Empirical -

Empirical -

1t

11

R +R° =1 (5.6-24)
C S
P
R, =75 (5.6-25)
c P
( Cr)EmpiricaI
R, = T (5.6-26)

( - ) (
0 80 Cr)E mplrl(;'al

Applied axial load, 1bs.
Applied torque, in-1bs.

Lower~bound value for the critical axial load when
acting alone. This value can be obtained by using the
equations and curves of Section 5.1.2, lbs.

Lower-bound value for the critical torque when acting
alone. This value can be obtained by using the equa~-
tions and curves of Section 5.4.2, in-lbs.

The knock~down factor obtained from Figure 4.2-8
(dimensionless). For the purposes of the present
case, the quantity R (see Figure 4,2-8) must be set
equal to the equivalent radius Rg which is computed
as follows:

R
~ Small (5. 6_27)

€ cosa

Radius at small end of cone, inches {measured per-
pendicular to the axis of revolution).

Vertex half-angle of cone, degrees.
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Figure 5.6-6. Conditional Interaction Curve for Truncated Sandwich Cones
Subjected to Axial Compression Plus Torsion

Y
The factor (()—g—()) should be introduced into the demoninator of the ratio Rg only when

R, is non-zero, For the special case where no axial load is present R, = 0), R

S

should be taken equal to T « (r_rcr)Empirical'

Attention is drawn to the fact that in Section 5.6.4.1, several factors are cited which
shed considerable doubt upon the reliability of results obtained from the indiscriminate
use of Equation (5,6-24) and Figure 5.6-6, In view of these uncertainties, one might
often choosc to employ the straight-line interaction formula,

R +R =1 (5.6-28)
which is plotted in Figure 5.6-7. This relationship can be used with confidence for

any length of cone and for any region of transverse shear rigidity of the core, since
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experience has shown that the linear interaction formula is never unconservative for

However, in many cases it will, of course, introduce

shell stability problems.

exceossive conservatism.,

Plasticity considerations should be handled as specified in Section 9.2. The plasticity

reduction factor n should always be based on the stresses at the small end of the cone.

Conservative Interaction Curve for Truncated Sandwich Cones

Subjected to Axial Compression Plus Torsion

Figure 5.6-7.

5.6.5 Other Loading Combinations

5.6.5.1 Basic Principles

In Section 5. 6.4, the combined loading condition of axial compression plus torsion is

treated. The interaction relationships presented there can be used for an additional
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loading combination by recognizing that at any given axial location on the cone the
peak meridional stress due to an applicd bending moment can he converted into an
equivalent uniform meridional stress. With this in mind, the design equations and
curves of Section 5.6.4, 2 ¢an be used for the combination of axial compression plus

bending plus torsion which is depicted in Figure 5. G-5.

S,orin=the oy

DT ER

Sy S

Figure 5.6-8, Truncated Cone Subjected to Axial Compression
Plus Bending Plus Torsion

To accomplish this it is simply required that the quantity RC be redefined as follows:

Pl
R - -—= (9. 6-29)
¢ P
( Cr)Empirical
where
, Ye 2M \
PPy — & (5.6-30)
yb small
and

P - Applied axial load, 1bs.

M Applied bending moment, in=-lbs,
Y, - Axial compression knock-down factor from Figure 4,2-8,
dimensionless,

Note: For the purposes of the present case, the quantity R (see
Figure 4, 2-8) must be set equal to the equivalent radius Re which
Is computed as follows:
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R
small

Re =
€ " cosa

(5.6-31)

Yy ~ Bending knock-down factor from Figure 4.3-2, dimcnsionless.
Note: For the purposes of the present case, the quantity R (see Figure

4,3-2) must be set equal to the equivalent radius R which is computed
as follows:

Rsmall
= i 5.6-32
€ cosQ ( )

small = Radius at small end of cone (measured perpendicular to the
axis of revolution), inches,
o = Vertex half-angle of cone, degrees.

The foregoing formula for P’ is based on the principles cited in Section 5.2

Since no sandwich test data are available to substantiate the recommendations made

here, they can only be regarded as a "best-available' criterion.

5.6.5.2 Design Equations and Curves
For simply supported, truncated, right-circular sandwich cones subjected to the
loading condition depicted in Figure 5.6-8, one may use the design equations and

curves of Section 5.6.4.2, except that the quantity R, must now be defined as follows:
P/
R = =—— (5.6-33)
P
( CI')Empirical

y
p’ =P +<—-°—> <R—2M—> (5. 6-34)
Yo/ \“small

where
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6

GENERAL INSTABILITY OF DOME-SHAPED SHE LLS

6.1 GENERAL

This section deals with dome-shaped shells whose contours are surfaces of revolution.
Figure 6.1-1 shows the shapes considered here, all of which are truncated at the equa-
tor. Note that the torispherical shape consists of a lower toroidal segment which
blends into a spherical cap. It is expected that the configurations shown here will
cover the large majority of the dome structures likely to be encountered in aerospace

applications. One should observe that for each of

SpheRrical Toroidal
Z

+ I + =
\ Toroidal
Boundary Simply- l a portion

Supported or Boundary Simply- Boundary Simply-
Clamped Supported or Supported or
Clamped Clamped
(a) Hemispherical (b) Ellipsoidal (¢) Torispherical

Figure 6.1-1. Structural Dome Shapes

these domes the maximum radius of curvature Ry, occurs at the apex. As a practi-
cal engineering expediency, analysis of all the illustrated configurations will be based

on this radius.



In the case of externally pressurized, thin-walled, isotropic (non-sandwich) domes, it
has long been recognized that the test results normally fall far below the predictions
from classical small-deflection theory for the axisymmetric huckling of complete
spheres. The discrepancies are usually attributed to,

a. the shape of the postbuckling equilibrium path coupled with the presence of
initial imperfections,

b. the fact that large-deflection analyses of asymmetric behavior yield criti-
cal stresses approximately 20 percent lower than the small-deflection axi-

symmetric values, and

c. the fact that classical small-deflection theory does not account for pre-
buckling discontinuity distortions in the neighborhood of the boundary,

This is analogous to the situation described earlier in this handbook (see Section 4. 1)
for the case of circular cylinders. For the latter, it has become common practice to
base stability analyses and design procedures on the use of classical small-~deflection
theory modified by empiriecal knock-down factors. This approach was selected in

Section 4.1 for sandwich cylinders and is also adopted here for sandwich domes.

6-2



6.2 EXTERNAL PRESSURE

6.2.1 Basic Principles

6.2.1.1 Theoretical Considerations

This section deals with the loading condition depicted in Figure 6.2-1, That is, a uni-

form external pressure acts over the entire surface of the sandwich dome. The net

N S S R

Figure 6.2-1, Sandwich Dome Subjected to External Pressure

vertical component of this loading is reacted by a uniform running load on the boundary.
From Figure 6.1-1, note that the domes can have either simply-supported or clamped
edges. That is, during buckling the boundary is constrained such that no radial dis-
placements occur. In the simply-supported case, the shell wall is free to rotate along
the boundary whereas for clamped edges such rotations are completely suppressed. It

follows, of course, that intermediate restraints to edge rotation are also acceptable.

The theoretical basis used here is the classical, small-deflection solution by Yao [6-1]

as reformulated by Plantema [6-27. This result embodies the following assumptions:

a. The facings are isotropic.
b. Both facings are of the same thickness.
c. Both facings have identical material properties.
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d. Bending of the facings about their own middle surfaces can be neglected.

e. The core has infinite extensional stiffness in the direction normal to the
facings.,
f. The core extensional and shear stiffnesses are negligible in directions

parallel to the facings.

g. The transverse shear properties of the core are isotropic.

R
h. The incquality > 1 is satisfied,
c
where
R - Radius to middie surface of sandwich sphere, inches,
tC = Thickness of core, inches.
i, Approximations equivalent to those of Donnell [6-3] can be applied.

Strictly speaking, this solution was derived for complete sandwich spheres which
exhibit small buckles that are axisymmetric with respect to a radius of the sphere.
The development isolated one such buckle as a free body so that shallow-shell theory
could then be employed. Yao presented his results in a form which is not conducive
to a ready physical interpretation of the phenomena involved, Therefore, Plantema
undertook to express the final relationships in a manner which would foster some
insight in this regard. He was able to show that, when the core has isotropic trans-
verse shear stiffness, Yao's solution is identical to the equations given earlier in this
handbook for axially compressed circular sandwich cylinders [sce Equations (4.2-27)
through (4.2-30) and Equations (4.2-4) and (4¢.2-5)1. That is, when the knock-down
factor, Yqr is included,

(o) = Y4 Ko (6.2-1)

cr Cc o
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where

and

When V. <2
c

When Vc =2

where

nE
f h
g, = —— (6.2-2)
o R
1-y?®
c
K =1 1 \Y% (6.2-3)
Be T 7T e :
K = L 6.2-4)
c VvV (6.
¢
o
o
V = — (6.2-5)
crimp
h2
g . = G (6.2-6)
crimp 2’cftc c

Critical compressive stress for sandwich sphere, psi.
Plasticity reduction factor, dimensionless.

Young's modulus of facings, psi.

Distance between middle surfaces of facings, inches.
Elastic Poisson's ratio of facings, dimensionless.
Radius to middle surface of sandwich sphere, inches.
Thickness of a single facing, inches.

Thickness of core, inches.

Transverse shear modulus of core, psi.



The equivalence between an axially compressed sandwich cylinder and an externally
pressurized sandwich sphere has been analyticaily demonstrated only for the case
where the two facings have identical material properties and are of the same thickness.
If one assumes that this equivalence still holds true when the facings are of different
thicknesses, Equations (4.2-2) through (4.2-7) can then be used here if Gy, is replaced

by GC so that, when the knock-down factor yd is included,

O = ydKCO'O (6.2-7)
where
h 24 bt
= nE,_  — 2=
o n R - (6.2-8)
l-p =@ +t)
and
When V. <2
c
K =1 1 A% 6.2-9
c T4 ¢ (6.2-9)
When V. -2
c
K = 1 6.2-10
c VvV (6.2-10)
c
where
%
Vc = —_— (6.2-11)
crimp
hZ?
= m———————— G . "1
Ucrimp (t, +t) tc c (6.2-12)
‘c1 and t. = Thicknesses of the facings (There is no preference as to

which facing is denoted by the subscript 1 or 2.), inches.
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The relationship between K, and V, can be plotted as shown in Figure 6.2-2. It is
important to note that the value V, = 2.0 establishes a dividing line between two
different types of behavior. The region where VC < 2.0 covers the so-called stiff-
core and moderately-stiff~core sandwich constructions. When Vc is in the neighbor-
hood of zero, the core transverse shear stiffness is high and the sandwich exhibits

maximum sensitivity to initial imperfections. As VC increases from

1.0

& SHEAR CRIMPING

Figure 6.2-2. Schematic Representation of Relationship Between Kc and Vc

zero to a value of 2.0, this sensitivity becomes progressively less. The domain
where Vc 2 2.0 is the so~called weak-core region where shear crimping occurs,
Sandwich constructions which fall within this category are not influenced by the pres-
ence of initial imperfections and a knock-down factor of unity can be applied to such
structures. It should be possible to develop a continuous transitional knock-down
relationship which recognizes the variable influence of the core rigidity but this is

beyond the scope of the present handbook.



6.2.1.2 Empirical Knock-Down Factor

As noted in Section 6.1, for the purposes of this handhook, the allowabhle stresses for
externally pressurized sandwich domes are eslablished by applyving an empirical knock-
down factor (yd) to the results from classical small-deflection theory, However, since
the available test data from sandwich dome constructions are very scarce, one cannot
yet determine Y4 values with a high degree of reliability. The only useful data un-
covered during the preparation of this handbook are those which were obtained by
North American Rockwell [ 6-4] in conjunction with the Saturn S-II development pro-
gram. These results give the Y4 values shown in Figure 6.2-3 which inclides two data
points from hemispheres and six data points from domes that were approximately
ellipsoidal. Reference 6-4 includes specimens whose membranc stresses at failure
ranged all the way from the clastic to the deeply plastic zones. In three cases it was
felt that these stresses were too high to permit the computation of reliable plasticity
reduction factors. Thercfore, these particular data were discarded and they do not
appear in Figure 6.2-3, Still another experimental point was discarded because of a
faulty edge condition in the test., In addition, as noted in Figure 6.2-3, two specimens
were subjected to a thermal gradient along with the external pressure. For each of
these domes, the inner facing was at roughly +280°F while the outer facing was at
approximately +10°F. This gradient was completely neglected in the analysis per-
formed to arrive at the related y4 values. Nevertheless, these results are retained

in Figure 6.2-3 since they fall within the scatter band displayed by the other speci-

mens having the same basic contour.
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To fully understand the information given in Figure 6.2-3, it is important for the
reader to be aware of the data reduction techniques employed here., For an explanation
of these procedures, reference may be made to the discussion in Section 4.2,1.2.1,
Although that section is concerned with sandwich cylinders, the same bhasic approach

was used in analyzing the domes.

Based on Figure 6.2-3, it is recommended that, except where shear crimping occurs,
the following values may be used for Yy
Yy = 0.20 for hemispheres (6.2-13)

'/d = 0.35 for ellipsoids and torispherical domes (6.2-14)

Insufficient data are available to discern any dependence of the knock-down factor on
the ratio RMax/p. However it is quite possible that even a large array of data would

lead to the same conclusion. This would be consistent with the practice usually accepted

for isotropic (non-sandwich) domes.

It is thought that there is physical justification for the tise of a Y4 value for hemispheres
which is lower than that for ellipsoids and torispherical domes. This justification lies
in the fact that, for the latter two configurations, the maximum membrane stresses
occur at the apex which is well-removed from the boundary disturbances. On the other
hand, thc membrane stresses in a hemisphere are uniform over the entire surface,
Discontinuity distortions at the boundaries are ignored in classical small-deflection
stability theory but, in reality, these deformations can act somewhat like initial im-

perfections and precipitate buckling. This fact, coupled with the uniform membrane

6~10



stress in the hemisphere, can lead to earlier failure than would be encountered for

shapes where the peak membrane stresses do not extend into the boundary regions.

Since the recommended values for y4 are based on meager test results, the method
proposed here is not very reliable and can only be regarded as a "best-available"
technique. It should only be used as a rough guideline and final designs must be

substantiated by test.
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6.2.2 Design Equations and Curves

For sandwich domes of the types shown in Figure 6.1-1 and subjected to uniform
external pressure, the critical apex stresses may be computed from the relationships
given in the oq‘uaﬁons on page -14 where the subscripts 1 and 2 refer to the separate
facings. There is no preference as to which facing is denoted by the subscript 1 or 2,
The equations on page 6-14 were obtained by a simple extension of the formulas pre-
sented in Section 6.2,.1.1. The extension was accomplished in order to cover some
situations where the two facings arc not made of the same material. This was achieved
through the use of equivalent~thickness concepts based on the ratios of the moduli for
the respective facings., For cases where the two facings are not made of the same
material, the resulting equations are valid only when the behavior is elastic m=1).
Application to inelastic cases (# 1) can only be made when both [acings are made of

the same material. For such configurations, E, and E_ will, of course, be equal,
The buckling cocfficients I\'C can be obtained from Figure ¢.2-4.

The knock-down factor Y may be chosen as follows:

When V- 2.0 When V2 2,0
c c
Use yd ~ 0,20 for hemispheres. Use y == 1.0 for hemispheres,
ellipsoids, and tori-
Use Yq 0.35 for cllipsoids and spherical domes,
torispherical domes.

The quantity RMa\( is the maximum principal radius of curvature for the dome and is
measured in units of inches. For all of the shapes shown in Figure 6. 1-1, this value
occurs at the apex.
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The formulations given here are based on the assumption that the transverse shear

stiffness of the core is isotropic.

this stiffness will vary with direction.

structures, one must select a single effective Gc value.

mode is critical (VC = 2.0),
In all other cases one must

selection.

However, in most practical sandwich constructions,

In order to apply the given criteria to such

Whenever the shear crimping

GC must be taken equal to the minimum value for the core,

rely on engineering judgment in making an appropriate

The plasticity reduction factor should always be based on the stress at the apex of the

dome, For elastic cases, use n=1,

of Section 9 must be employed.

Whenever the behavior is inelastic, the methods

Facing 1 Facing 2
= 6.2-15 = .2-16
Apex 0crl Yy KCIOO; ( ) Apex UCI'2 Y4 KC2 002 (6.2-16)
= .2-1 - .2-1
001 nk, C0 (6.2-17) o% nE CO (6.2-18)
2 t
h y Bl EL)
C0 == R (6.2-19)
Max '/ 1 _U82 [(E,t,) + (E.t)]
h2 h?
, = G (6.2-20) . = G (6.2-21)
crimp, E_ c crimp, E, c
[t1 +(E) ta] tC (’};)tl +t tc
% %
V =V = L (6.2-22) V =V = < (6.2-23)
¢, ¢ _ ¢, ¢ o
< crimp, g crimp,
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The critical pressure P.. (in units of psi) may be computed as follows:

2

= t, + 1 6.2-24

Per R [Ucrl 1" Yer 2] ( )
Max

In the special case where t; =1, Etf and both facings are made of the same material,

Equations (6.2-15) through (6.2-24) can be simplified to the following:

A = 995
pexa 'ycho-o (6.2-25)
(ME h
o, = = (6.2-26)
[1-v? Max
e
h2
X = G (6.2-27)
crimp 2tftC [
%
V = — (6.2-28)
crimp
4 t 6.2-29
Per TR (Ucrf) (6.2-29)
ax

6.3 OTHER LOADING CONDITIONS
No information is available concerning the general instability of dome ~-shaped sandwich
shells under loading conditions other than that of uniform external pressure which is

covered in Section 6.2.
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4

INSTABILITY OF SANDWICH SHELL SEGMENTS

7.1 CYLINDRICAL CURVED PANELS
7.1.1 Axijal Compression

7.1.1.1 Basic Principles

It will be helpful here to first consider the case of axially compressed, isotropic

(non-sandwich) skin panels for which all four boundaries are simply supported. In

such cases, the Schapitz criterion [7-1] furnishes a practical means for the com-

putation of critical stresses. This criterion accounts for the effects of skin-panel

geometry as the transition is made from wide panels, which behave essentially as

full cylinders, to narrow panels which approach the behavior of flat plates. In par-

ticular, Schapitz proposed that one use the following relationships which have been

verified by the rederivation of Reference 7-2:

When
R
then
) = qg_+
when
R
then

(7.1-1)

(7.1-2)

(7.1-3)

(7.1-4)



where,

o = Critical stress for buckling of a simply supported flat plate of the con-
P figuration shown in Figure 7.1-1, psi,
OR = Critical stress (in units of psi) for buckling of a simply supported complete

cylinder of radius R, length ap, and thickness tp (see Figure 7.1-1). The
quantities R, AR and tg are all measured in units of inches. An empirical
knock-down factor should be incorporated here to account for the detri-
mental effects from initial imperfections.

Figure 7.1-1. Cylindrical Panel and Associated Flat-Plate Configuration
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b. For sandwich panels which fall in the moderately-stiff or weak-core cate-

_should be taken equal to the higher of the two values 9 and g .

gories, O,

in the course of preparing this handbook, no analysis was made of test data from sand-
wich panels. Therefore, the reliability of this approach has not been established, and,
until experimental substantiation is obtained, one can only regard the method as a "best-

available" technique.

In view of the lack ol sandwich data comparisons, it is informative to note that a large
collection of test results from isotropic (non-sandwich) specimens is evaluated in
Reference 7-3 and it is shown there that the Schapitz criterion is a reliable approach
for such panels. The test configurations embraced a wide rangc of (%) ) (%) , and (—?>
ratios. Narrow, wide, and intcrmediate pancls were included. The K values fell
between those for the case where all four boundaries are simply supported and the case
where all four boundaries are fully clamped. The results are summarized in the qual-
itative presentation of Figure 7.1-3. This figure shows the gencral characteristics
and relative positioning for each of the following when displayed in a nondimensional
logarithmic format:

a. The theoretical buckling relationship for flat plates.

b. The classical, small-deflection, theoretical buckling relationship for
complete cylinders.

c. A lower-bound buckling relationship for complete cylinders. This is
obtained by multiplying the values from b: above, by the empirical

knock-down factor of Reference 7-4.

d. The design curve based on the Schapitz criterion.



Design Curve Based
on Schapitz Criterion

(%)

Figure 7.1-3. Schematic Logarithmic Plot of Test Data for Cylindrical Isotropic
(Non-Sandwich) Skin Pancls Under Axial Compression
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Although derived specifically for the case of simple support, this criterion has been
successfully employed [7-37] where the boundaries provide various degrees of rotational
restraint along with the condition of no radial displacement. This was accomplished by

simply adjusting the value for Op to correspond with the appropriate edge restraints.

For the case under immediate discussion (non-sandwich skin panels), the Schapitz
criterion can be graphically represented as shown in Figure 7. 1-2. A series of design
curves of this type are given in Reference 7-3. The transition curve defined by Equation
(7.1-2) becomes tangent to the full-cylinder curve when op = Zop. For (R/t) values
greater than that of the tangency point, the skin panel behaves as a complete cylinder.
For all other (R/t) values, the transitional relationship applies. Note that the transition

curve asymptotically approaches the line for Op- The quantity K denoted in Figure 7.1-2

a
(— = Constant

b) - c
=) = Constant

\ & & K = Constant
&

Figure 7.1-2, Schematic Logarithmic Plot of Schapitz Criterion
for Non-Sandwich Cylindrical Skin Panels
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is the conventional flat-plate buckling coefficient which is dependent upon the aspect
ratio (a/b), boundary conditions, and type of loading. From this figure, it can be
scen that, if the critical stress were taken cqual to the higher of the two values Op
and (J'R, one would only be neglecting the transitional strength associated with the

o
: R s g .
cross-hatched region., When el 1, negleet ol this contribution would result in a

p

design value which is S0 percent of the Schapitz prediction. For all other values of the
T, 9

ratio {-—1], the differences would be less significant, Indeed, for most ranges of { —1},
ag

p P
the conscrvatism introduced by neglecting the cross-hatched area would be quite small,

Since the Schapitz criterion ig dependent solely on the valuces Ul) and O'R, the speculation
is made here that one might extend its application to eylindrical sandwich panels merely
by computing Op and OR [rom the sandwich design equations and curves which are pro-
vided in Seetions 3 and 4. However, in making such an cextension, one must recognize
that the behavior of a sandwich panel is dependent upon the core stiffness. TFor stiff-
core constructions (sce Scetion 4.2), it should be possible to make direet application

of Equations (7.1-1) through (7.1-1), On the other hand, in the weak-core region, the
sandwich panel will fail by shear crimping, and curvature will not contribute to the
buckling strength., In such cases, Equations (7.1-1) through (7.1-4) would yield uncon-
scrvative predictions. The situation for sandwich constructions having moderately-
stiff cores would, of course, fall somewhere between the foregoing limiting cases.
Consequently it is recommended here that,

a, For stiff~core sandwich pancls, Equations (7.1-1) through (7.1-4) can be
applied.



Also shown in Figure 7.1-3 are the approximate locations of the test data from the
non-sandwich cylindrical panels of References 7-5 through 7-8. During the course
of the study reported in Reference 7-3, quantitative plots were made for each of these
specimens and the corresponding test points were accurately located on the appropriate
graph. Based on these many different plots, the test points were inserted in Figure
7.1-3 in approximation to their actual positions relative to the several basic curves
and regions of behavior. This figure shows that all but four of the test points which
fall below the design curve lie within the region where the panel behaves essentially
as a flat plate. Except for those four points, all of the test data for the regions of
transitional and full-cylinder behavior fall between the following two hounds:

a. The recommended design curve.

b. The values which would have been predicted if o did not incorporate
an empirical knock-down factor.

It is concluded that Figure 7.1-3 verifies the reliability of the Schapitz criterion
for the casc of isotropic (non-sandwich) skin panels, even where the boundary con-
ditions include some rotational restraint in addition to the requirement of no radial
displacement. This conclusion is based partly on the fact that the character of flat-
plate buckling is quite different from that exhibited by wide cylindrical panels and
complete cylinders. The flat plate can continue to support steadily increasing in-
plane loading well into the postbuckling region. This is in contrast to the sudden
drop-off in load usually observed for wide panels and full cylinders. Consequently

the Schapitz criterion utilizes full the oretical predictions as the limiting case of a
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flat plate is approached. One might, therefore, expect that within this region test data

will display seme small degree of scatter on both sides of the design curve. However,

because of the physical behavior cited ahove, this generally will not lead to any serious

structural deficiencies.



7.1.1.2 Design Equations and Curves

For cylindrical sandwich panels subjected to axial compression, the critical stress

may be computed from the following:

stiff-Core Constructions

Weak-Core and Moderately-Stiff-
Core Constructions

o = The higher of the two (7.1-9)
cr values ¢ and o
P R

Critical axial compressive stress (in units of psi) for the buckling of a
flat sandwich plate which has the same boundary conditions as the cylindri-

cal panel and, except for curvature, is of the same geometry as the cylin-
drical panel (see Figure 7. 1-1), No knock-down factor is required in com-

When
<2 .1-5
UR op (7 )
then
2
og =aq +S—B—- and (7.1-6)
cr p 4o’ (.
when
20 7.1-17
op > 29, ( )
then
= 7. 1"8
Oorp OR ( )
where,
O =
P
puting this value.
%R =

Critical gxial compressive stress (in units of psi) for the buckling of a

complete sandwich cylinder which, except for the circumferential dimen-

sion, is identical to the curved panel.

An appropriate empirical knock-

down factor should be incorporated here to account for the detrimental
effects from initial imperfections.

As a rule-of-thumb, one may assume that stiff-core constructions are those which

satisfy the inequality

vV =<0.25
C

(7.1-10)

where V , is computed as specified in Section 4.2.
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The quantity op should be computed by using the design equations and curves given in

Section 3,

The quantity ch should be computed by using the design equations and curves given in

Section 4.

A graphical representation of Equations (7,1-5) through (7.1-8) is provided in Figure

T.1-4,

The method given here applies only where all four boundaries are completely restrained
against radial displacement, Therefore, no free edges are permitted. Any or all of
the four boundaries may include rotational restraint of any degree ranging all the way

from a hinged condition to fully clamped,
4.0

3. 0

Figure 7.1-4. Graphical Representation of Equations (7.1-5) through (7, 1-8)
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7.1.2 Other Loading Conditions

7.1.2.1 Basic Principles

In the preparation of this handbook, almost no consideration was given to the buckling
of cylindrical sandwich panels subjected to loadings other than axial compression.
Therefore, no firm recommendations can be made here concerning design equations
and curves. llowever, the suggestion is offered that, for such cases, one might con-
sider an extension of the concepts presented in Section 7. 1.1. In particular, for all
regions of core stiffness, it might be possible to apply the equation

o = [The higher of the tW()} (7.1-11)

values ¢ and ¢
P R

if one simply computes the values crp and o R for the loading condition of intcrest.

In conformance with the restrictions of Section 7.1.1, the foregoing suggestion applies
only when all four boundaries of the panel are completely restrained against radial dis-
placement. The refore, no free edges are permitted. Any or all of the four boundaries
may include rotational restraint of any degree ranging all the way from a hinged con-

dition to fully clamped.
7.1.2.2 Design Equations and Curves
No recommendations are made here.

7.2 OTHER PANEL CONFIGURATIONS
No information is available concerning the instability of sandwich shell segments of

shapes other than the cylindrical configurations considered in Section 7.1.
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EFFECTS OF CUTOUTS ON THE GENERAL INSTABILITY OF
SANDWICII SHELLS

In many practical aerospace shell structures, it is required that cutouts be incorporated
for purposcs of access, lightening, venting, etc. However, no theoretical solutions or
experimental data have been published for the general instability of sandwich shells
having such penetrations, Even in the case of isotropic (non-sandwich) shell struc-
tures, this problem has received little attention. Some theoretical solutions have been
accomplished concerning the stress distributions around cutouts in isotropic shells

but the authors of this handbook are aware of only one paper (8-1) dealing with the
general instability problem, and this paper is not sufficiently comprehensive to pro

vide a practical design criterion.

An obvious need exists for further theoretical and experimental work to be accomplished
in this area, and, in view of this situation, no related design recommendations can be

made at the present time,
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9

INELASTIC BEHAVIOR OF SANDWICH PLATES AND SHELLS

9.1 SINGLE LOADING CONDITIONS

9.1.1 Basic Principles

For structural members stressed beyond the proportional limit of the material, it is
customary to compute critical loads or stresses through the use of so-called plasticity
reduction factors. In this handbook, such factors are denoted by the symbol 1. In
many cases, appropriate formulas for n are established by theoretical derivations
based on plasticity theory but, when this approach proves impractical, one must some-
times resort to empirical expressions. Section 9.1,2 gives the formulations for n
which are recommended in this handbook for various sandwich configurations, types
of loading, and modes of instability. These equations are based on the information
provided in References 9-1 through 9-5 for isotropic (non-sandwich) plates and shells.
Application of these reduction factors involves the trial-and-error procedure outlined
below:

a. First, assume 7 = 1 and compute the critical stress for the appropriate
configuration, loading condition, and mode of failure.

b. If the critical stress computed in a, above, is less than the proportional
limit of the facing material, no further computations are required. How-
ever, if the computed critical stress exceeds the proportional limit, one
must continue as specified below.

c. Assume a new value for the critical stress which is in excess of the pro-
portional limit but less than the value computed in a, above.

9-1



d. Based on the stress level assumed in ¢, above, and the stress-strain curve
for the [acing material, compute a valuc for the appropriate plasticity re-
duction factor, The formulas of Tables 9.1-1 through 9.1-3 can be used
for this purposc.

c. Using the n value computed in d above, recalculate the critical stress.

f. If the ceritical stress calculated in e, above, is in rcasonable agreement
with the value assumed in ¢, no further computations are required, How-
ever, if such agrcement is not achieved, one must then repeat the compu-
tation cycle starting with ¢. This iterative procedure must be continued
until acceptable agreement is attained between the assumed and the calcu-
lated critical stresses.,

A numerical example of the foregoing procedure is provided in Section 9.1.2,



9.1.2 Design Equations

Recommended formulas for plasticity reduction factors are given in Tables 9.1-1

through 9.1-3 where

Ef = Compressive Young's modulus of facings, psi.

ES = Compressive secant modulus of facings, psi.

Et = Compressive tangent modulus of facings, psi.

Gf = Elastic shear modulus of facings, psi.

GS = Secant shear modulus of facings, psi.

v, = Elastic Poisson's ratio of facings, dimensionless.
v = Actual Poisson's ratio of facings, dimensionless.

values for v can be obtained by using

E
0.50 -<—é§> (0.50 - Ve) 9.1-1)

f

<
Il

or

<
I

3G,
0.50 —<—E—>(0.5o-ue) (9.1-2)

f
The technique for applying the plasticity reduction factors is demonstrated below by
means of a numerical example for an axially compressed sandwich cylinder which is
assumed to be of sufficient length to fall outside the short-cylinder range. It is further

assumed that

a. both facings are of the same thickness,
b. both facings are made of the same material, and
c. the transverse shear properties of the core are isotropic so that
6= (G /G )= 1.
Xz Yz
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For such cylinders, Section 4.2.2 specifies that the critical stress for general in-

stability may be computed from

cer c c o
where
MmE) |
0 - —
o 1.2 R
e

and

Ycrimp T 2t.t Cxz

fec

For the purposes of the present sample problem, assume that

6
Ef = 10 xlO)psi
v = 0.30

e

R = 32.0"

h = ,320"
= .020"

tf 20

t = .300"

c

G = 20,000 psi

Xz
h
= — = ,160"
P=3
R 2.0"
_ = E’I—O = 200
o . 1ls0"

Facing Proportional Limit = 25,000 psi

9-4

(9.1-3)

(9.1-4)

(9.1-5)

(9.1-6)



By using these values and assuming that n = 1, it is found that

= 0,49
Ye
g = 104,900
o
. = 170, 800
crimp
Vc = 104,900/170,800 = .Gl4
K = 0.85
c
Therefore,
g =y Ko = .49 x .85 x 104,900 = 43,600
cr c c

Note that the computed critical stress (43, 600 psi) is higher than the proportional limit
(25,000 psi) of the facings. Hence the use of n = 1 cannot be valid and one must now
proceed on a trial-and-error hasis. That is, one must select an assumed critical
stress value which exceeds the proportional limit. For the purposes of this sample
problem, suppose that the value Oup = 30,000 is selected, By using the stress-strain
curve for the facing material, the corresponding plasticity reduction factor can then
be computed from the following formula which is taken from Table 9,1-3:
[

1-v°

(9.1-7)

Suppose that this gives the result that
n = 0.900

so that one now obtains

il

Yo 0.49 (remains unchanged)

1l

o4 .900 x 104,900 = 94,400



o . = 170, 800 (remains unchanged)

crimp
\’C = 94,400/170,800 = ,553
K = 0.86
o

Thercefore,

g =y Ko = .49 x.86 ©94,400 = 39,800
CcTr & C O

Note that the computed eritical stress (39, 800 psi) does not agree very closely with
the assumed value (30,000 psi). Therefore, another iteration will be performed by
selecting a new assumed critical stress, say 35,000 psi. Suppose that by using
Equation (9.1-7) the corresponding plasticity reduction factor is found to be

n = 0.790

so that one now obtains

Y, = 0.49 (remains unchanged)
O, = .790 ¥ 104,900 = 82,900

= 170,800 (remains unchanged)

erimp
\“'C = 82,900/170,800 = ,486
K = 0,87
¢
Therefore,
o =y Ko = .49 x.87 ¥82,900 = 353,400
Cr cC C o

Note that the computed critical stress (35,400 psi) is now in reasonable agreement
with the assumed value (35,000 psi). Therefore, no further iterations are required

and the design value for the critical stress is 35,000 psi.
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Table 9-3. Recommended Plasticity Reduction TFactors for the General Instability
of Circular Sandwich Cylinders, Truncated Circular Sandwich Cones,
and Axisymmetric Sandwich Domes

e e R

Plasticity Reduction Fuctors

e e e e

Loading Condition . 1 Moderate Length
& Short Cylinders &

Through Long Cylinders
and Cones B

and Cones

1-p°] L 1-p*© T B
Axinl Compression E Ml _i : ©
AXii prese M T Ef n 1-v° l,‘
e . . IS SR ‘i— -
1-v I 1-v j I8 04
Pure Bending ] ¢ t n = ¢ 5
) 1 -* E[ 1-v7 F,l

External Lateral Pressure n -
*r [1ov2]7 ¢
Torsion n =" ° <-—S—>
1-° G,
LY f
£t '1 -y ? = G
Transverse Shear = c S
; n |12 G,

Hemispherical, Ellipsoidal, and
Torispherical Domes (All trun-
cated at the equator)

l—yz‘;L ,EE
e t s

External Pressure

*This formula for n is not valid when the cylinder or cone is so short that it
behaves egsentially as a long, flat plate. However, it is unlikely that such
configurations will be encountered in aerospace applications. Furthermore,
it is informative to note that, for such constructions, the given formula for
n is conservative,

++This formula for 7 is not valid when the cylinder or cone is so short that it
behaves essentially as a long, flat plate. However, it is unlikely that such
configurations will he encountered in aerospace applications. Furthermore,
it is informative to note that, for such constructions, the given formula is
approximately 13-percent unconscrvative.
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9.2 COMBINED LOADING CONDITIONS

9.2.1 Basic Principles

As noted in Reference 9-6, only limited information is available on the inelastic sta-
bility of shell structures subjected to combined loading conditions. A similar situation
exists for flat-plate constructions. Very little theoretical work has been done in these
fields due to the complexity of the problem and, in general, related plasticity reduc-
tion criteria have not been established., However, in many practical cngineering
applications, one is confronted with this tvpe of problem and it becomes necessary to
determince at least a rough estimate of the critical loading conditions. Toward this
end, one should note a fundamental hypothesis of plasticity theory which specifies that,
for a given material and when the stress intensity is increasing (loading condition), the
stress intensity 0; is a uniquely defined, single-valued function of the strain intensity
¢j. When o is decreasing (unloading condition). the relationship hetween O and e;

is linear as in a purely clastic case. Based on the octahedral shear law for plane

stress conditions . the stress and strain intensities o and ¢; can he defined as follows

[9-1]:
o ‘/02+03-00 + 3712 (9.2-1)
i h:4 y Xy
2 P
e :'/s“+ez+e € +€” /4 (9.2-2)
i /3 X y Xy Xy

It suvld he noted that Equation (9.2-1) is sometimes writlen in tw following form to

facilitate its use:

i (cx)yll -y + 9y 4 3A° (9.2-1a)
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where

o, - Normal stress in the x direction, psi.
Uy -~ Normal stress in the y direction, psi.

T = Shear stress in the xy plane, psi.

sx - Normal strain in the x direction, in/in.
Ey - Normal strain in the y direction, in/in.
Exy - Shear strain in the xy plane, in/in.

Y =0, /a

A =T/ o,

From the foregoing discussion it can be concluded that, for the case of increasing

o; (loading condition), the relationship between gy and e; is identical to the conven-
tional stress-strain curve obtained from a uniaxial loading test. It should therefore

be evident that although each individual stress component may be less than the propor-
tional limit of the material, the combination of these stresses can give a gy value which
lies above the proportional limit so that the behavior is actually inelastic. It is im-
portant to keep this phenomenon in mind when deciding whether or not plasticity effects

must be considered.

Lacking a rigorous approach to the subject stability problem, it is conjectured here
that the foregoing generalization of the stress-strain relationship might be used in

conjunction with the plasticity reduction factor

n== (9.2-3)



to obtain conscrvative predictions of inelastic instability under combined loadings. The

quantitics E; and Ef are as follows:

Ey Tangent modulus of facing material obtained from the curve of

0; vs e; at a prescribed value of ;> psi.

f - Young's modulus of facing material, psi.
The above formula for n was selected in view of its conservative nature. Since the
overall procedure suggested here is based purely on an enginecring estimation, it is

thought that this conservatism is well justified.

The details of the suggested approach are outlined in Section 9.2.2. It is important
to keep in mind that this method does not give a rigorous solution, and its reliability
has not been evaluated by comparisons against test data. Therefore, this can only be

regarded as a ""best-available” technique and one should be cautious in its application.

9-12



9.2.2 Suggested Method

The method suggested here for analysis of the inelastic stability of sandwich plates
and shells first requires that the conventional stress-strain curve for the facing ma-
terial have the stress coordinates relabeled as ¢; and the strain coordinates relabeled
as c,. By completely ignoring all plasticity considerations (n = 1), one should then
proceed to establish a first-estimate for the critical combined stress condition. This
can be achieved by using the appropriate interaction relationships provided in earlier
sections of this handbook. In performing this computation, the assumption should be
made that for the critical combined stress condition the individual stress components
are in the same ratios to each other as exist for the actual applied loading condition.
That is, during loading, proportionality between the several individual stress compo-
nents is maintained. The stresses from the elastic first-estimate computation must

then be inserted into the equation

o, :‘10‘2 +02-0.0 +31° (9.2-4)
i X y Xy

to determine the associated stress intensity value. If this value does not exceed the
proportional limit of the ¢g; versus e, curve, the first-estimate stress values are in
fact the critical combination. However, if the related o; value exceeds the propor-
tional limit of the g; versus e curve, the first-estimate results are not valid and one
must then resort to the following trial-and-error procedure which is similar to that
outlined in Section 9. 1:

a. Assume a new value for g; which is in excess of the proportional limit

for the 0; versus e; curve,
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For the g; value assumed in a, above, compute the plasticity reduction
factor

E¢
n-— (9.2-5)
E
f
where
Ey Tangent modulus of the g; versus e; curve, psi.
E¢ Elastic modulus of the 0j versus ¢; curve, psi.

Using the 7 value from b, above, recalculate the critical stress intensity
0, This is accomplished by simply multiplying the {irst-estimate 0; value
by 7.

If the new valuc for o; computed in ¢, above, is in reasonable agreement
with the g; value assumed in a, above, the related plasticity reduction
factor m is valid. Then the critical combination of stresses is obtained by
multiplying each of the first-estimate stress components by this 7 value.

If the value of o; computed in c, above, is not in reasonable agreement
with the o; valuc assumed in a, the related plasticity reduction factor is
not valid. One must then repeat the computation cvcle starting with a.
This iterative procedure must be continued until acceptable agreement is
attained between the assumed and the computed I, values,
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